Trabajo de DIPLOMA

Obtención, a partir de materias primas cubanas y por reducción aluminotérmica, de un ferromanganeso de bajo contenido de carbono y con más del 65 % de manganeso.

AUTORA:
Taymara Hernández Ortega

TUTORES:
Dr. Lorenzo Perdomo González
Lic. Juan A. Ribalta Quesada
Pensamiento
A la manera que el río hace sus propias riberas, así toda idea legítima hace sus propios caminos y conductos.

Ralph Waldo Emerson
Dedicatoria
A mis padres.
A mis padres por ser mi inspiración y estar siempre de mi lado.

A mi hermana por su constante preocupación.

A Lie por ayudarme a encontrar seguridad en mi misma y enseñarme, que si se es esforzado y constante, se pueden alcanzar los sueños.

A mis amistades por escucharme y regalarme un poco de su tiempo, especialmente a Jorge y Alexander, que nunca dijeron, no.

A Miriam, por abrirme sus puertas.

Al personal del laboratorio químico en ACINOX Las Tunas, porque sin su ayuda no hubiese sido posible la realización de gran parte de este trabajo.

A mis tutores por nunca dejarme sola en esta difícil tarea.

A todo el que cuando lo necesité se acercó y me brindó su mano.
Índice.

Resumen... 2
Summary... 3
Introducción... 4

Capítulo 1: Fundamentación teórica. .. 7
 1.1. Aleaciones. Ferromanganeso. ... 7
 1.2. Obtención de ferromanganesos. Proceso aluminotérmico... 10
 1.3. Materias primas para obtener ferromanganeso por aluminotermia.
 .. 14
 1.3.1. Manganeso. Minerales de manganeso ... 14
 1.3.2. Fundentes. .. 17
 1.4. Materiales refractarios.. 18
 1.5. Espectrometría de emisión secundaria de rayos X... 19
 1.6. Absorción molecular... 23
 1.7. Diseño factorial con mezclas usando relaciones. ... 24

Capítulo 2: Materiales y métodos.. 27
 2.1. Materiales empleados en la obtención del ferromanganeso. .. 27
 2.2. Método de síntesis del ferromanganeso. .. 27
 2.3. Materiales empleados para la caracterización química de la aleación y la escoria................. 28
 2.4. Método de caracterización de la escoria y la aleación. Técnica de análisis semicuantitativo. 28
 2.5. Diseño experimental. ... 29

Capítulo 3: Análisis y discusión de los resultados.. 31
 3.1. Resultados experimentales .. 31
 3.2. Análisis del diseño experimental ... 32
 3.3. Balance de masas. ... 50

Conclusiones... 56
Recomendaciones. .. 57
Referencias bibliográficas. .. 58
Anexos. ... 62
Resumen.

Se efectuó un estudio de la influencia de la cascarilla de laminación, aluminio y caliza sobre el contenido de manganeso en ferromanganesos de bajo contenido de carbono, obtenidos por reducción aluminotérmica a partir de materias primas cubanas. Para esto se realizó un diseño experimental factorial 2^k aplicado a mezclas utilizando relaciones, el cual se analizó estadísticamente. Además se determinó el rendimiento de las síntesis y los porciones de recuperación del manganeso en las aleaciones.

Se caracterizaron químicamente tanto las ferroaleaciones como las escorias empleando fluorescencia de rayos X y espectrometría de absorción molecular y, a partir de las composiciones de estos materiales, se hizo un balance de masas y se compararon los resultados teóricos con los experimentales.

El porcentaje promedio de manganeso en las aleaciones obtenidas fue de 57.05, alcanzándose como valor máximo 67.21 (contenido promedio). El rendimiento de la síntesis y la recuperación del manganeso promedios fueron 70.1 % y 50.3 % respectivamente.

Del análisis del diseño experimental se determinó que solo la caliza y la interacción aluminio:cascarilla influyen positivamente sobre el porcentaje de manganeso en la aleación y que las interacciones aluminio:caliza y aluminio:cascarilla:caliza no son estadísticamente significativas.

Se obtuvieron ferromanganesos sustituyendo la caliza utilizada como fundente por escoria y se compararon los porciones de manganeso en las aleaciones, los rendimientos de las síntesis y las recuperaciones de manganeso.

A partir de los resultados alcanzados se concluye que es factible la obtención de un ferromanganeso con un contenido de manganeso superior al 65 % en masa, utilizando materias primas cubanas y empleando la reducción aluminotérmica como método de síntesis.
Summary.

An study of the influence of the lamination husk, aluminum and limestone in the quantity of manganese in low content of carbon ferromanganese, obtained by aluminothermy reduction starting from Cuban by-products was made. For this a 2^k Factorial experimental design applied to mixtures using relations was made, which was analyzed statistically. It was also determined the yield of the synthesis and the recovery percent of manganese in the alloys.

The ferroalloys and scum were chemically characterized using X- Rays fluorescence and molecular absorption spectrometry, starting from the composition of this materials were made a mass balance, and the theoretical results were compared with the experimental ones.

The mean percent of manganese in the obtained alloys was 57.05, reaching as maximum value 67.21 (mean content). The yields of the synthesis of the manganese average were 70.1% and 50.3% respectively.

From the analysis of the experimental design it was determinate that only the limestone and the interactions aluminum:husk influence positively on the manganese percent in the alloy and that the interaction aluminum:limestone and aluminum: husk :limestone are not statiscally significant.

Ferromanganesees were obtained substituting the limestone uses as flux by scum and were compared the manganese percent in the alloy, the yields of the synthesis and the recoveries of manganese.

From the reached results, one concludes that the obtaining of ferromanganese with a manganese content superior to 65% in mass is feasible, from Cuban raw materials and using the aluminothermic reduction as synthesis method.
Introducción.

Desde el siglo XIX las reacciones de reducción de óxidos con elementos metálicos han sido utilizadas tanto a escala de laboratorio como a escala industrial en diversos procesos.

Los principios de la reacción de la termita fueron expuestos en 1898 por el Dr. Hans Goldschmidt en la Convención de la Sociedad Alemana de Electroquímica. Esta reacción fue descubierta por este investigador en 1894 y, hasta la fecha, es empleada por su importancia en la obtención de metales puros, aleaciones metálicas, en la fabricación de corindón artificial y como fuente de calor en soldadura y materiales incendiarios. [1]

Los productos de las termitas tienen gran diversidad de aplicaciones en la fabricación de aleaciones metálicas, permitiendo la obtención de nuevos materiales a partir del procesamiento de minerales y residuales cubanos. También se pueden utilizar mezclas de minerales, por ejemplo cromita y pirolusita, lo que posibilita la obtención de aleaciones formadas por más de un elemento aleante. [17]

La obtención de estas aleaciones puede ser de gran importancia para el desarrollo de consumibles de soldadura y de materiales para la fabricación de aceros corrientes y aleados, ya que permitiría la producción de aleaciones de muy bajo contenido de carbono las cuales son costosas y difíciles de obtener por reducción carbotérmica, sobre todo en el caso de las aleaciones de cromo y manganeso, elementos con gran tendencia a formar carburos.

En el Centro de Investigaciones de Soldadura (C.I.S) de la Universidad Central “Marta Abreu” de Las Villas se desarrolla la obtención de ferroaleaciones de bajo contenido de carbono mediante un procedimiento de reducción aluminotérmica de minerales cubanos, para la fabricación de consumibles para soldadura y para la industria de elaboración de aceros. La obtención de este tipo de ferroaleaciones disminuye considerablemente los costos de producción de
dichos materiales y permitiría al C.I.S producir un nuevo renglón de alto valor agregado y gran demanda por los fabricantes de electrodos de soldadura y la industria metalúrgica en general. Además se utilizaría el aluminio desechado por diferentes industrias del país.

Problema científico.

¿Cómo obtener un ferromanganeso de bajo contenido de carbono y con más del 65 % de manganeso en masa, a partir de materias primas cubanas (pirolusita, virutas de aluminio, cascarilla de laminación y caliza)?

Objetivo general.

Obtener, por reducción aluminotérmica, un ferromanganeso de bajo contenido de carbono y con más del 65 % de manganeso en masa.

Objetivos específicos.

1. Estudiar la influencia de los contenidos de aluminio, cascarilla de laminación y caliza sobre el porcentaje de manganeso en las aleaciones obtenidas, mediante un diseño experimental factorial 2^k aplicado a mezclas utilizando relaciones.

2. Caracterizar químicamente las aleaciones y escorias producidas.

3. Comparar el porcentaje de manganeso, rendimiento de la síntesis y la recuperación de manganeso en las aleaciones obtenidas cuando se utiliza caliza como fundente con las sintetizadas empleando escoria, ambas en la misma proporción en la mezcla.

4. Realizar un balance de masas teórico a partir de las composiciones de las materias primas y comparar estos resultados con los experimentales.

Hipótesis.

La composición química de los minerales de manganeso existentes en Cuba, combinados con las virutas de aluminio procedentes de los talleres de maquinado, permiten la obtención por aluminotermia de ferromanganesos de bajo carbono con contenidos de manganeso superiores al 65%.
Justificación del trabajo.

Las ferroaleaciones con altos contenidos de manganeso y bajo carbono se utilizan habitualmente en la formulación de los revestimientos de electrodos en las fábricas de estos productos de Nuevitas, COMETAL y la CUJAE. Esta ferroaleación actúa como desoxidante y desulfurante durante el proceso de soldadura. También es muy empleada, con estos mismos objetivos, en la fabricación de aceros corrientes.

Esta ferroaleación puede ser obtenida en Cuba ya que: existen los minerales necesarios con un contenido de manganeso tal que permitiría alcanzar el porcentaje de este metal que se requiere en la aleación; la industria cubana está ampliando la utilización de aluminio laminado en la fabricación de una amplia gama de productos (carpintería de aluminio, antenas, ollas de presión, etc.) lo cual genera un apreciable volumen de virutas y, además, para la obtención de la aleación no se requieren de complejas instalaciones industriales ni de grandes cantidades de energía.
Capítulo 1: Fundamentación teórica.

1.1. Aleaciones. Ferromanganeso.

Las aleaciones constituyen mezclas homogéneas de metales al estado líquido (fundidas). Este término también se aplica al producto que solidifica de un fundido homogéneo. [15]

La mayoría de las aleaciones son, esencialmente, disoluciones de unos metales en otros, no obstante pueden estar presentes también compuestos fundidos. [15]

Las aleaciones solidificadas pueden variar ampliamente en constitución. Pueden ser cuasi – homogéneas o bastante poco homogéneas y pueden estar constituidas por cristales mixtos o de compuestos de los metales o ambas cosas. [15]

Los metales que forman la aleación pueden que no se hayan mezclado durante la solidificación, de tal manera que la aleación sólida será más o menos una mezcla de dos componentes; pueden haberse mezclado solo parcialmente o en absoluto, o pueden haberse unido completamente en alguna extensión durante el enfriamiento, para formar compuestos que no son capaces de existir a altas temperaturas, los cuales también pueden formar cristales mixtos. [15]

La multiplicidad del comportamiento es tan grande que el estudio de la naturaleza de las aleaciones se realiza en una rama especial de la ciencia: la metalografía. [15]

Se denominan ferroaleaciones a aquellas aleaciones que presentan un contenido de hierro superior o igual al 4 % en peso y en cuya composición entran, además, uno o varios elementos en las proporciones en peso siguientes:

- Cromo: contenido superior al 10 %.
- Manganeso: contenido superior al 30 %.
- Fósforo: contenido superior al 3 %.
• Silicio: contenido superior al 8 %.
• Otros: contenido superior al 10 %, en total, de los demás elementos excepto el carbono, sin que el porcentaje de cobre sea superior al 10 %.

Las ferroaleaciones constituyen materiales básicos para la fabricación de aceros inoxidables y ordinarios. Su obtención se realiza en casi todos los casos por medio de procesos reductores a temperaturas elevadas, producidas por combustibles sólidos o por medio de energía eléctrica, en ocasiones utilizando como reductores otros metales.

El número de ferroaleaciones que se utilizan en la siderurgia es muy grande, pudiendo distinguirse las ferroaleaciones cuyo empleo fundamental es como desoxidante del acero, como los ferromanganesos y ferrosilicos, las cuales prácticamente se utilizan en todos los aceros en los que también, en algunas calidades, tienen la doble misión de constituir elementos de aportación de manganeso, o de silicio, para la fabricación de aceros especiales conteniendo proporciones elevadas de estos elementos. También se encuentran aquellas cuya única finalidad es la de aportación. [2]

La mayor parte de las ferroaleaciones necesitan para su fabricación un gran consumo de energía en forma de electricidad, por lo que los países donde más se ha desarrollado esta industria son los que tienen buena disponibilidad de la energía eléctrica a bajo precio. [2]

En el caso específico de los ferromanganesos, el mineral de manganeso es mucho más caro y escaso y el consumo específico de energía eléctrica es mucho más bajo, por lo que pueden abordar con mucha más ventaja esta fabricación aquellos países que, aunque no excepcionalmente dotados en fuente de energía, tengan a su disposición buenos yacimientos de pirolusita. [2]

De lo anterior se deduce que siempre se trata de llegar a un compromiso entre el costo de la materia prima, el consumo de energía y el precio de la ferroaleación; en esto se basa la posibilidad o no de desarrollar estos procesos.
En la mayor parte de los casos esta industria puede adaptarse a las condiciones locales que permitan realizar una fabricación económica.

El ferromanganeso es una de las aleaciones más empleadas en siderurgia por sus propiedades desoxidantes y desulfurantes, siendo frecuente no bajar la proporción de su utilización en los aceros corrientes. También se emplea, en mayor o menor proporción, como agente aportador de manganeso en aceros especiales. [2]

El manganeso como desulfurante.

La presencia de azufre en el acero hace que este se agriete en caliente o al rojo y provoque la formación de grietas de cristalización, por lo que se hace necesaria su eliminación. [18]

En la práctica el sulfuro de manganeso se separa mediante dos procesos: con ayuda de Mn y MnO y también con CaO. El proceso de desulfuración cuando se emplea manganeso como desulfurante se verifica mediante la siguiente reacción química:

$$\text{FeS} + \text{Mn} \rightarrow \text{MnS} + \text{Fe (I)}$$

El sulfuro de manganeso es poco soluble en el metal y pasa parcialmente a la escoria, quedando el resto en el metal en forma de inclusiones de sulfuro u óxidosulfuros. [18]

Se ha establecido que la presencia de aluminio y silicio en el metal acelera significativamente el proceso de desulfuración, ya que el azufre se desprende al mismo tiempo que el oxígeno. Lo anterior es una consecuencia de la evaporación del azufre en forma de Al$_2$S$_3$ (temperatura de sublimación 1 550 °C) y de SiS (temperatura de sublimación 940 °C)

El manganeso como desoxidante.

La presencia del oxígeno en los aceros, en forma de solución sólida o inclusiones de óxidos, es muy perjudicial. Este problema se puede eliminar a través de la expulsión de este elemento con la ayuda de sustancias químicas que posean mayor afinidad con el oxígeno que el hierro y formen óxidos de una menor
solubilidad en el metal líquido que el FeO. Entre estos elementos encontramos el aluminio, vanadio, silicio, carbono, manganeso y cromo, por lo cual se utilizan con este fin ferroaleaciones de los mismos. [18]

Reacción típica de desoxidación:

\[\text{FeO} + \text{Mn} \rightarrow \text{MnO} + \text{Fe (II)} \]

El ferromanganeso como elemento aportador de manganeso.

El manganeso se emplea para la fabricación de muchos aceros. Cuando el contenido de manganeso en el acero es elevado este adquiere una alta resistencia al desgaste, a la abrasión y al impacto, utilizándose para la fabricación de piezas para maquinarias de perforación, dragas, equipos de trituración y molienda y para la fabricación de cambios de vía. Además el Mn afina, en general, la estructura del acero y aumenta la resistencia a las altas temperaturas, la resistividad eléctrica y baja fuertemente la conductividad calorífica. [18]

Debe señalarse que el acero para este tipo de piezas especiales tiene un contenido de Mn superior al 13 % y de C alrededor del 1.2 %. Este es el llamado acero Hadfield el cual posee alta tenacidad y plasticidad, típica de los aceros austeníticos {solución sólida de carbono en hierro γ, [Fe γ (C)]}, además de una resistencia relativamente alta. [9]

1.2. Obtención de ferromanganesos. Proceso aluminotérmico.

Según la calidad que se desee obtener es preciso emplear distintos procesos de fabricación de ferromanganeso, los cuales pueden resumirse en: [2]

1. Fabricación de ferromanganeso corriente alto en carbono.

2. Como para muchas aplicaciones no es utilizable un ferromanganeso muy alto en carbono (aproximadamente un 7%), que es el producto que se obtiene normalmente en el proceso anterior, es preciso rebajar el contenido de manganeso de algunas de las siguientes maneras:
 a) Fundiendo el ferromanganeso alto en carbono con mineral de manganeso.
b) Reduciendo el mineral de manganeso con silicio, en vez de con carbono, lo que puede hacerse a su vez por dos procesos distintos:

b) - 1. Reducción con ferrosilicio alto en silicio, con escoria básica.

b) - 2. Fabricación de silicomanganeso en horno eléctrico y utilización de esta aleación para reducir los óxidos de manganeso, también en presencia de escoria básica

3. Para los procedimientos anteriores aparece la dificultad de reducir el contenido de fósforo, por lo que en un tercer proceso se parte de escorias altas en manganeso y bajas en fósforo el cual se ha concentrado en el metal, producidas en la obtención de ferromanganeso normal. Con estas escorias se produce silicomanganeso y luego ferromanganeso bajo en carbono y fósforo.

4. Empleo del aluminio como agente reductor (aluminotermia).

La fabricación de ferromanganeso alto en carbono está basada en la reducción de MnO en presencia de carbono. Los demás óxidos son inestables a temperaturas elevadas según muestran las siguientes reacciones sucesivas: [2]

4MnO₂ → 2 Mn₂O₃ + O₂ (esta reacción se produce a partir de los 527 °C) (III)
6Mn₂O₃ → 4Mn₃O₄ + O₂ (la descomposición del Mn₂O₃ se produce a 900 °C) (IV)
2Mn₃O₄ → 6MnO + O₂ (este último es estable hasta la temperatura de 1 172 °C) (V)

El proceso de reducción con el carbono se verifica mediante la reacción química siguiente:

MnO + C → Mn + CO (VI)

La reducción con carbono (reducción directa) se desarrolla en todos los casos con carácter endotérmico (referida a la temperatura ambiente), o sea, que el calor exigido para la reducción de los óxidos supera al desprendido por la combustión del carbono con formación de monóxido de carbono. Si se realiza una reducción indirecta con monóxido de carbono, la reacción es ligeramente exotérmica pero la reducción del óxido sería aún incompleta. Por esta razón la
reducción se realiza en hornos eléctricos que son altos consumidores de energía. [2]

Debido al elevado gasto de energía eléctrica y a que las aleaciones obtenidas por este método tienen gran contenido de carbono, el mismo no cubre todas las posibles aplicaciones que se presentan en la industria. Para obtener aleaciones de bajo contenido de carbono (3-3.5 % en masa) se necesitan altas temperaturas y mucho tiempo, lo que va acompañado de una pérdida importante de manganeso por volatilización. [2]

Para la fabricación de ferromanganeso con menos contenido de carbono se puede utilizar como agente reductor al silicio y la reducción ocurre por una ecuación similar a la anterior:

\[2\text{MnO} + \text{Si} \rightarrow 2\text{Mn} + \text{SiO}_2 \] (VII)

Proceso aluminotérmico.

Básicamente termita es el nombre genérico dado a las reacciones entre los óxidos metálicos y los agentes reductores. Como agentes reductores pueden utilizarse el aluminio, el magnesio, el calcio y el silicio. Cuando el agente reductor es el aluminio este proceso recibe el nombre de aluminotermia.

El agente reductor más empleado ha sido el aluminio, debido a que el magnesio tiene una baja temperatura de ebullición y el calcio presenta carácter higroscópico. También se han utilizado mezclas de silicio y aluminio como elementos reductores, pero la utilización exclusiva de silicio precisa el aporte externo de calor, ya que por sí misma es difícil que la reacción progrese. [17]

Las reacciones típicas de algunos procesos aluminotérmicos se muestran a continuación: [17]
Reacciones $\Delta H (\text{KJ/mol})$ Temperatura alcanzada ($^\circ\text{C}$)

<table>
<thead>
<tr>
<th>Reacciones</th>
<th>$\Delta H (\text{KJ/mol})$</th>
<th>Temperatura alcanzada ($^\circ\text{C}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3\text{Fe}_2\text{O}_4 + 8\text{Al} \rightarrow 9\text{Fe} + 4\text{Al}_2\text{O}_3$</td>
<td>3 010</td>
<td>3 088</td>
</tr>
<tr>
<td>$3\text{FeO} + 2\text{Al} \rightarrow 3\text{Fe} + \text{Al}_2\text{O}_3$</td>
<td>783</td>
<td>2 500</td>
</tr>
<tr>
<td>$\text{Fe}_2\text{O}_3 + 2\text{Al} \rightarrow 2\text{Fe} + \text{Al}_2\text{O}_3$</td>
<td>759</td>
<td>2 960</td>
</tr>
<tr>
<td>$3\text{CuO} + 2\text{Al} \rightarrow 3\text{Cu} + \text{Al}_2\text{O}_3$</td>
<td>1 152</td>
<td>4 866</td>
</tr>
<tr>
<td>$3\text{Cu}_2\text{O} + 2\text{Al} \rightarrow 6\text{Cu} + \text{Al}_2\text{O}_3$</td>
<td>1 089</td>
<td>3 138</td>
</tr>
<tr>
<td>$3\text{NiO} + 2\text{Al} \rightarrow 3\text{Ni} + \text{Al}_2\text{O}_3$</td>
<td>864</td>
<td>3 171</td>
</tr>
<tr>
<td>$\text{Cr}_2\text{O}_3 + 2\text{Al} \rightarrow 2\text{Cr} + \text{Al}_2\text{O}_3$</td>
<td>2 287</td>
<td>2 977</td>
</tr>
<tr>
<td>$3\text{MnO} + 2\text{Al} \rightarrow 3\text{Mn} + \text{Al}_2\text{O}_3$</td>
<td>1 686</td>
<td>2 427</td>
</tr>
<tr>
<td>$3\text{MnO}_2 + 4\text{Al} \rightarrow 3\text{Mn} + 2\text{Al}_2\text{O}_3$</td>
<td>4 356</td>
<td>4 993</td>
</tr>
</tbody>
</table>

Tabla # 1: Reacciones típicas de algunos procesos aluminotérmicos.

La variación de energía libre (ΔG) para una reacción química a presión constante puede representarse por la ecuación siguiente:

$$\Delta G = \Delta H - T\Delta S \ (1)$$

donde:

- ΔH: variación de entalpía del proceso (KJ/mol)
- ΔS: variación de entropía del sistema (KJ/mol·K)
- T: temperatura (K)

La igualdad anterior constituye la ecuación de una línea recta de la forma $y = n + mx$ cuyos coeficientes n y m representan ΔH y $-\Delta S$ respectivamente.

La representación gráfica de estas líneas rectas se denomina diagrama de Ellingham. [Anexo # 1] Este tipo de diagrama nos permite predecir la espontaneidad de una reacción de desplazamiento a una temperatura determinada. Al utilizar este diagrama, o las tablas para el análisis de los valores de la variación de energía libre de formación para los diversos óxidos, se revela por qué se utiliza el aluminio en estas reacciones. El valor grande y negativo de la variación de energía libre de formación del óxido de aluminio hace que, salvo raras excepciones no comunes en metalurgia, cualquier combinación con la variación de energía libre de formación de otro óxido resulte en una ΔG total negativa, es decir, el proceso es termodinámicamente espontáneo.
Otro aspecto importante que se debe señalar es que este proceso resulta relativamente fácil de escalar, debido a que no requiere equipamiento de alta complejidad y no necesita fuente de energía adicional para su desarrollo, pues el mismo se lleva a cabo a partir del calor generado por las reacciones químicas entre el aluminio y los óxidos metálicos. Después de iniciada la reacción aluminotérmica el proceso transcurre hasta el final no pudiéndose realizar un control sobre la misma, lo cual constituye una desventaja.

1.3. Materias primas para obtener ferromanganeso por aluminotermia.

1.3.1. Manganeso. Minerales de manganeso.

El manganeso es un metal de color blanco argénteo muy duro y frágil, su densidad es de 7.27 g/cm³ y su temperatura de fusión es 1244 ºC. Es bastante abundante en la naturaleza siendo el elemento que ocupa el decimoquinto lugar. [2]

El manganeso se combina con otros elementos químicos siendo los sistemas más importantes: [2]

- Mn – Fe: al estado fundido el hierro y el manganeso son solubles en cualquier proporción y no forman combinaciones químicas.
- Mn – C: el manganeso forma con el carbono combinaciones químicas muy estables, entre las que se han estudiado las formas ± y β del Mn₃C y el Mn₃C₄.
- Mn – Si: con el silicio forman compuestos como MnSi, Mn₂Si y Mn₂Si₃, siendo el MnSi el más estable. También existen eutécticos a 1084 ºC con 12 % de Si, a 1230 ºC con 30 % y 1144 ºC con 50 % de Si.
- Mn – Al: existen dos combinaciones Al₅Mn y Al₃Mn y un eutéctico que funde a 650 ºC, con poco contenido de manganeso.
Mn – O: el manganeso forma con el oxígeno cuatro combinaciones, MnO2, Mn2O3, Mn3O4 y MnO. Los más estables de los óxidos son el MnO y el Mn3O4, los restantes son menos estables y se descomponen a altas temperaturas con formación de los óxidos más estables. Así, el MnO2 calentado a 300 °C desprende oxígeno y por tostación a temperaturas de 800 – 900 °C se transforma en Mn3O4. A muy altas temperaturas solo es estable el MnO.

Minerales de manganeso.

Los diferentes minerales de este elemento se clasifican atendiendo a su aplicación en: minerales para la industria química (80 % en masa de MnO2) y minerales para la industria siderúrgica, los que a su vez se clasifican según la relación en que se encuentran el Mn y el Fe, pero fundamentalmente por su contenido de dióxido de silicio el cual debe ser menor o igual que el 11 %. [2]

Entre los principales minerales de manganeso se destacan los oxidados y los carbonatados. A los primeros pertenecen la pirolusita (MnO2 con aproximadamente un 63.2 % en masa de Mn), la manganita (Mn2O3·3H2O con 60.4 % en masa de Mn), la bernadita (MnO2·H2O con 44 – 45 % en masa de Mn), la barrunta (Mn2O3 con 66.5 % en masa de Mn) y la hausmanita (Mn3O4 con 72 % en masa de Mn). Al grupo de los carbonatados pertenece la rocrodisita (MnCO3 con 47,8 % de Mn), la oligonita (23 – 32 % en masa de Mn) y la manganocalcita (20 -25 % en masa de Mn). Además existe un tercer grupo, que agrupa a los silicatos de calcio y manganeso como la rodanita (MnO·SiO2 41.9 % en masa de Mn) y bustamita. [13]

Como se expone anteriormente, solo algunos pueden considerarse como materias primas con manganeso aprovechable. La mayor parte de estos son minerales oxidados y es el dióxido de manganeso (MnO2) el único estable a temperatura y presión atmosférica, ya que los demás óxidos con menos contenido de oxígeno se oxidan fácilmente. Los minerales más importantes son los óxidos tipo pirolusita, a los cuales acompañan con mucha menor importancia otras especies mineralógicas. [13]
Para la fabricación de ferromanganeso del 70 % de manganeso basta con que la relación de manganeso a hierro sea solo 6. El límite de fósforo en el mineral no debe pasar de 0.0035 % por cada 1 % de manganeso que contenga el mineral. [2]

El fósforo, al igual que el azufre, constituye un elemento perjudicial ya que empeora las propiedades mecánicas del acero y provoca su agrietamiento en frío. La presencia de carbono baja aún más la resistencia del metal, debido a que se forman eutécticos triples de fácil fusión del tipo Fe – C – P.

Para la producción de manganeso por aluminotermia se deben emplear minerales muy altos en manganeso y con una pequeña proporción de impurezas, y no debe pasar del 0.09 % de Fe por cada 1 % de Mn y del 0.002 % de P. [2] En el caso del mineral utilizado para los experimentos las relaciones de estos elementos fueron 0.02 % de Fe y 0.002 % de P por cada 1 % de Mn respectivamente.

En Cuba se encuentra pirolusita en varias zonas de las provincias Pinar del Río, Camagüey y Granma. [4] Para este estudio se utilizó como materia prima la pirolusita procedente del yacimiento “Margarita de Cambute”, la cual tiene la composición química mostrada en el anexo # 2.

Como se aprecia en dicha tabla, este es un mineral de tipo oxidado con una alta ley (76.86 % de MnO₂). Los otros óxidos más significativos en su composición lo constituyen el SiO₂ en primer orden (8.6 %) y en menores proporciones el CaO y el Al₂O₃ (2.0 y 2.06 % respectivamente). El hierro y fósforo aparecen en valores 1.17 % Fe₂O₃ y 0.11 % P.
1.3.2. **Fundentes.**

En general, los metales se encuentran en sus minerales acompañados de impurezas que hay que eliminar. Estas deben recogerse en una escoria que sobrenada por encima del metal fundido.

Para formar esta escoria es necesario añadir al lecho de fusión los fundentes, los cuales cumplen las siguientes funciones: [2]

1. Combinarse con los elementos de la ganga para disminuir el carácter refractario de la misma, dando lugar a la formación de sustancias de más fácil fusión, las cuales forman la base de la escoria.

2. Combinarse con las impurezas del metal fundido que se quiere obtener para eliminarlas de este, pasando a la escoria.

La selección de los fundentes es un problema químico, ya que la composición de la ganga determina a la del fundente que más conviene utilizar. Si los minerales tienen, como suele ser normal, un exceso de sílice o elementos ácidos, entonces los fundentes deben ser básicos. Pero puede ocurrir que haya minerales que tengan como ganga elementos básicos, en cuyo caso habrá que añadir elementos ácidos para la escorificación de la ganga. [2]

También hay otra clase de fundentes que llamaremos neutros, que sin ser ni ácidos ni básicos se suelen utilizar para fluidificar la escoria y hacerla más activa en su trabajo. [2]

Existen algunos tipos de minerales, denominados estos autofundentes, cuyos componentes ácidos y básicos se encuentran presentes en tales proporciones que no necesitan la adición de fundentes. [2]

Fundentes ácidos.

La sílice es la única sustancia que puede clasificarse estrictamente como fundente ácido, utilizándose en forma de arena, grava o cuarzo. [2]
Fundentes básicos.

Los fundentes básicos son, fundamentalmente, la caliza y la dolomina. [2]

En la caliza tanto el óxido de calcio como el óxido de magnesio se combinan con la sílice de la ganga y forman la escoria constituida, fundamentalmente, por silicato de calcio y silicato de magnesio. [4]

\[
\text{SiO}_2 + \text{CaO} \rightarrow \text{CaSiO}_3 \text{ (VIII)}
\]

\[
\text{SiO}_2 + \text{MgO} \rightarrow \text{MgSiO}_3 \text{ (IX)}
\]

Fundentes neutros.

Estos no tienen actividad química en los lechos de fusión sino que generalmente se añaden para fluidificar las escorias. El más comúnmente usado es el espato flúor o fluorita, cuyo ingrediente activo es el CaF\(_2\). [2]

Los factores económicos son los más importantes en la elección de uno u otro de estos fundentes y también, a veces, hay que tener en cuenta el uso posterior que se le vaya a dar a las escorias, ya que las altas en magnesio no son apropiadas para la fabricación de cemento. [2]

1.4. **Materiales refractarios.**

El proceso de obtención de la aleación se lleva a cabo en dos etapas: la primera es la preparación de la carga y la segunda el encendido, a partir de la cual transcurre la reacción hasta el fin. El encendido se puede realizar mediante una chispa o cinta de magnesio. [2] También puede ser iniciada la reacción mediante un arco eléctrico.

Como recipiente de reacción en las síntesis de este tipo se emplean materiales refractarios, los que pueden clasificarse de varios modos, ninguno de los cuales es completamente satisfactorio. Desde el punto de vista químico, las sustancias refractarias, al igual que la materia en general, pueden tener alguna de las siguientes características ácido - base: básicas,ácidas y neutras. En teoría los refractarios ácidos no se debían usar en contacto con escorias básicas y lo
contrario puede decirse de los refractarios básicos. Por otra parte, con la posible excepción del carbono, es dudosa la existencia de refractarios neutros. De aquí que la clasificación química tiene poco valor como guía a efectos prácticos. Las clasificaciones de los refractarios según su uso son demasiado generales, pudiéndose dividir por un criterio mineralógico en: [2]

- Grupos de las arcillas y caolines.
- Grupo de las silimanitas.
- Grupo de los silicatos de magnesio.
- Grupo de las bauxitas y diasporos.
- Grupo de las cuarcitas.
- Grupo de materiales básicos (magnesita y dolomita).
- Grupo de la cromita.
- Grupo del carbono.

Los refractarios en base carbono tienen como propiedad fundamental su infusibilidad, aún a temperaturas muy altas. En cambio, tienen la desventaja de la posibilidad de su inflamación o su oxidación, por lo que no puede utilizarse el ladrillo de carbono amorfo más que en atmósferas reductoras cuando se pretende que tenga una larga duración. [2]

1.5. Espectrometría de emisión secundaria de rayos X.

La espectrometría de emisión secundaria de rayos X es un método de análisis cualitativo y cuantitativo elemental. Se utiliza para la identificación y la determinación de la concentración de todos los elementos con número atómico desde el 9 (flúor) hasta el 92 (uranio).

La muestra a analizar se irradia con un haz de rayos X primario proveniente de una fuente de este tipo de radiación (tubo de rayos X). En este proceso los elementos presentes en el sistema objeto de análisis se excitan y emiten radiación
X fluorescente secundaria, la cual es dispersada por un cristal analizador. Esto último permite medir la intensidad y la longitud de onda de cada línea espectral y conocer por tanto qué elemento y en qué concentración se encuentra el mismo en la muestra.

Para la identificación y cuantificación de un determinado elemento se utilizan las líneas características que aparecen superpuestas en el espectro continuo a un determinado valor de potencial, las de mayor importancia son las de la serie K y L y dentro de estas las K_α (transiciones L_{III} → K y L_{II} → K) y K_β (transición M_{III} → K).

La espectrometría de emisión secundaria de rayos X se conoce también como fluorescencia de rayos X (FRX). Acorde a como se disperse la radiación secundaria proveniente de la muestra la FRX se puede clasificar en dos grandes campos:

1. Fluorescencia de rayos X de dispersión de energías (FRXDE).
2. Fluorescencia de rayos X de dispersión de longitudes de onda (FRXDL).

En este trabajo se empleó la segunda variante. En ella se miden la intensidad y la longitud de onda de cada radiación que conforme el haz secundario, empleándose como dispositivo dispersivo cristales analizadores.

El instrumento donde se lleva a cabo este tipo de análisis se conoce como espectrómetro. A continuación se muestra un esquema del mismo.
Generador de voltaje: es el que suministra la diferencia de potencial y la corriente eléctricas al tubo de rayos X.

Espectrómetro: es donde se produce la excitación, dispersión y detección de la radiación X fluorescente. Está compuesto por el tubo de rayos X, compartimiento de la muestra, colimadores, cristal analizador, detectores y goniómetro, así como por otros accesorios como sistema de vacío, regulador de temperatura y regulador de presión.

Electrónica de medición: es la encargada de convertir las señales provenientes de los detectores en una magnitud medible. Está compuesto principalmente por el amplificador, analizador de amplitud de impulsos, contador de pulsos, ratemer y registrador.

Computadora y accesorios: es la encargada de convertir los datos de intensidad a concentración, por medio de programas específicos realiza la corrección debido a los efectos de absorción – refuerzo. Puede también controlar las operaciones del espectrómetro.

Controlador lógico: es una interfase universal que permite conectar la computadora con el espectrómetro. Posibilita el régimen automático.

Pueden hacerse tres tipos de análisis con esta técnica: cualitativo, semicuantitativo y cuantitativo.

En el análisis cualitativo se hace rotar el cristal y el detector un intervalo angular determinado y se va reflejando en el registrador la intensidad de los rayos X detectados. Los elementos se identifican por los ángulos 2θ a los cuales aparecen los picos en el registro, ya que cada cristal analizador posee una tabla de la cual se puede determinar λ conocida 2θ.
En el análisis semicuantitativo la concentración de un elemento puede ser estimada por la altura de sus picos en el espectro, al comparar la longitud de estos con la de esas mismas señales obtenidas de muestras patrones, o sea se compara la altura de las líneas de un elemento en espectros producidos por muestras patrones y la muestra problema.

En el análisis cuantitativo se mide la intensidad de la línea analítica en muestras patrones y con estos últimos se construye un grafico de calibración, del cual se puede derivar la concentración analítica.

Ninguna técnica analítica puede proceder con tan amplia variedad de formas de muestras como lo hace la FRX. Al equipo se le puede introducir la muestra en diferentes formas y estado físico, así pueden analizarse sólidos, pastas, líquidos, gases, polvos sueltos o colectados en filtros, así como también polvos en briquetas (pastillas). El material a investigar puede ser metálico, mineral, cerámico, plástico, goma, tela papel o prácticamente cualquier otro. La determinación de la composición química de la escoria y la aleación se analizó utilizando briquetas.

El método de análisis es inherentemente no destructivo en muchos casos, las muestras casi siempre se pueden medir más de una vez o ser almacenadas para someterlas a otros análisis por otras técnicas.

La FRX es aplicable sobre un intervalo extremadamente amplio de concentraciones que abarca desde 100 % hasta menos de 1 ppm en casos favorables.

Debido a la simplicidad del espectro de rayos X, la interferencia espectral es poco frecuente, sin embargo, cuando ocurre, se dispone de métodos que permiten minimizarla lo más posible.

Puesto que se pueden analizar por esta técnica casi todos los elementos y dada la velocidad del análisis, así como la diversidad de formas y estados en que se le puede introducir la muestra al instrumento, no existe ningún campo, tanto en la investigación como en la industria, en que no juegue hoy en día un papel importante la FRX. Ejemplo del empleo de esta técnica de análisis instrumental
elemental lo tenemos en la química, física, geología y mineralogía, así como en la industria química, del cemento, cerámica, del vidrio y de aceros.

El análisis de los elementos con número atómico (Z) menor que 22 (titanio) está sujeto a ciertas dificultades e inconvenientes, los cuales se hacen más severos a medida que Z disminuye siendo bastante serios para los elementos comprendidos entre el Si y el F. Esto se debe a la baja producción de fluorescencia de los elementos ligeros así como a la elevada absorción que presenta la radiación X fluorescente producida por los mismos en su recorrido entre la muestra y el detector.

Solamente una capa superficial muy pequeña de la muestra es la que contribuye en la emisión de radiación X secundaria, por lo que el método es sensible a la textura superficial y la homogeneidad de la sustancia a analizar.

1.6. Absorción molecular.

Cuando pasa una radiación por una capa transparente de sólido, líquido o gas, pueden eliminarse selectivamente ciertas frecuencias como consecuencia del proceso llamado absorción. En este caso, la energía electromagnética se transfiere a los átomos o moléculas que constituyen la muestra; como resultado de ello, estas partículas pasan del estado de más baja energía a estados de mayor energía, o estados excitados. A temperatura ambiente la mayoría de las sustancias se encuentran en su nivel energético más bajo, o sea en estado fundamental. La absorción, por tanto, produce por lo general una transición entre el estado fundamental y estados con mayor contenido energético.

La absorción molecular por moléculas poliatómicas, particularmente en estado condensado, es un proceso considerablemente más complejo que el de la absorción atómica, porque el número de estados de energía está muy aumentado. Aquí la energía total de una molécula está dada por:
Fundamentación teórica

\[E = E_{electrónica} + E_{vibracional} + E_{rotacional} \]

donde \(E_{electrónica} \) describe la energía electrónica de la molécula, mientras que \(E_{vibracional} \) se refiere a la energía de la molécula relacionada con las diferentes vibraciones atómicas. El tercer término de la ecuación anterior designa la energía asociada con la rotación de la molécula alrededor de su centro de gravedad.

Para absorber radiación infrarroja, una molécula debe experimentar un cambio neto en el momento dipolar como consecuencia de su movimiento vibratorio y rotatorio. Solo en estas circunstancias puede interaccionar con la molécula el campo eléctrico alternante de la radiación y causar cambios en sus movimientos.

1.7. Diseño factorial con mezclas usando relaciones.

En química es usual trabajar con pocas variables conocidas y casi siempre controlables, por lo que se planifican las experiencias con vista a obtener modelos matemáticos o empíricos que describan el sistema estudiado. Los diseños factoriales \(2^k \) adoptan un polinomio como modelo. [11]

El diseño factorial con mezclas usando relaciones se emplea para aquellos casos en que es más importante conocer la relación entre los componentes de una mezcla que la variación absoluta de los componentes entre sí. [12]

Sea un sistema de “q” componentes sujetos a la condición de normalidad, el número de relaciones “k” que se puede establecer será “q-1”. Las relaciones que se forman tienen que poseer un componente común de la mezcla.

Por ejemplo; para un sistema de cinco componentes las relaciones que se establecen son las siguientes:

\[
\begin{align*}
Z_1 &= \frac{X_1}{X_5} & Z_2 &= \frac{X_2}{X_5} & Z_3 &= \frac{X_3}{X_5} & Z_4 &= \frac{X_4}{X_5} \\
\end{align*}
\] (2)
Se establecen cuatro relaciones, las que se toman como variables, por tanto, al aplicar un diseño factorial el número de experimentos sería 2^k, donde “k” es la cantidad de relaciones, por lo que para el ejemplo anterior $2^4 = 16$.

Se plantea la condición de normalidad $\sum_{i=1}^{q} X_i = 1$.

La relación entre los diferentes componentes de la mezcla se establece de la siguiente forma:

$X_1 + X_2 + X_3 + X_4 + X_5 = 1 \ (3)$

$Z_1X_5 + Z_2X_5 + Z_3X_5 + Z_4X_5 + X_5 = 1 \ (4)$

$(Z_1 + Z_2 + Z_3 + Z_4 + 1)X_5 = 1 \ (5)$

Se define $R = Z_1 + Z_2 + Z_3 + Z_4 + 1 \ (6)$, por lo que $RX_5 = 1$ y:

$X_5 = \frac{1}{R}, \quad X_1 = \frac{Z_1}{R}, \quad X_2 = \frac{Z_2}{R}, \quad X_3 = \frac{Z_3}{R}, \quad X_4 = \frac{Z_4}{R} \ (7)$

La matriz del diseño de experimento factorial con relaciones para el ejemplo anterior sería:

<table>
<thead>
<tr>
<th>No.</th>
<th>Z₁</th>
<th>Z₂</th>
<th>Z₃</th>
<th>Z₄</th>
<th>R</th>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
<th>X₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Los valores de “R” se calculan para cada uno de los dieciséis experimentos teniendo en cuenta que el signo negativo significa que se debe tomar el valor mínimo de “Zj” correspondiente y el positivo significa que se debe tomar el valor máximo.

Las “Xi” se calculan a partir de las expresiones en función de “R” para los dieciséis experimentos. Para cada uno de estos hay que tener en cuenta el signo negativo y positivo que significan el mínimo y máximo de “Zi” respectivamente. En cada caso se debe emplear el valor de R correspondiente a dicho experimento.

Las experiencias a realizar vienen dadas por la matriz de experimentos. Las filas indican las experiencias distintas que se deben realizar para hallar los valores de la variable independiente.
Capítulo 2: Materiales y métodos.

2.1. **Materiales empleados en la obtención del ferromanganeso.**

Para llevar a cabo las síntesis se emplearon las siguientes materias primas:

- Pirolusita extraída del yacimiento de Margarita de Cambute.
- Virutas de aluminio procedente de la INPUD “1º de Mayo”.
- Cascarilla de laminación generada en la Empresa Antillana de Acero.
- Caliza del yacimiento de Palenque.

Como recipiente de reacción se utilizó un crisol de grafito de 2.2 L de volumen útil y la iniciación del proceso se realizó con un electrodo también de grafito, conectado a una fuente de electricidad de 220 V y 40A.

2.2. **Método de síntesis del ferromanganeso.**

La pirolusita se tritura y se tamiza según la granulometría deseada (0.2 mm), luego se pesan las cantidades del mineral, aluminio, cascarilla y fundente, se mezclan, se homogenizan durante 45 minutos en un tambor rotatorio y se ponen a secar en una estufa a 200 º C por 1.5 horas. El tamaño de grano de la cascarilla y el fundente fue también de 0.2 mm y el del aluminio menor de 5 mm.

Secada la mezcla, se coloca una pequeña porción de ella en el crisol de grafito y se hace saltar sobre la misma un arco eléctrico empleando un electrodo, también de grafito, para que se inicie la reacción. El resto de la carga se adiciona en pequeñas fracciones debido a que el proceso es muy violento. Después de verificada la reacción se deja enfriar la mezcla fundida en el crisol hasta que solidifique. Por último se separa la escoria de la aleación por inspección visual atendiendo a la apreciable diferencia en la densidad y aspecto físico de ambas.
2.3. **Materiales empleados para la caracterización química de la aleación y la escoria.**

Se utilizaron los siguientes reactivos, equipos y utensilios en la caracterización química por fluorescencia de rayos X, tanto de la aleación como de la escoria:

- n – butilmetacrilato (15%).
- Acetona.
- Ácido bórico.
- Molino de martillo.
- Molino de discos.
- Tamiz de 0.1 mm.
- Espectrómetro de rayos X Philips PW 2404.
- Analizador Leco CS 125.

2.4. **Método de caracterización de la escoria y la aleación. Técnica de análisis semicuantitativo.**

Se tritura la muestra para obtener un tamaño de grano idóneo para fluorescencia de rayos X (≤ 0.1 mm), tanto para la escoria como para la aleación.

A la muestra ya triturada y tamizada se le adiciona un aglomerante y se mezcla. En este caso se utiliza Elvacite (n – butilmetacrilato al 15 % en acetona).

Luego se pulveriza nuevamente y se prensa a 300 kN de presión para darle forma de pastilla, utilizando como soporte de la misma 6 g de ácido bórico. La pastilla ya terminada queda con 40 mm de diámetro, pero luego de su colocación en el portamuestras son expuestos a radiación solo 27 mm. La muestra se lleva a este último cuidando que no se fragmente la pastilla o se dañe la textura.
El software le hace 10 barridos a la muestra por grupos de elementos, presentando así los espectros por barrido y permitiendo la identificación del elemento y las líneas $K\alpha$ y $K\beta$ del mismo. (Ver anexo # 8 donde se muestra un ejemplo de espectro de fluorescencia de rayos X)

Luego se le entra a la computadora la orden de cuantificar los resultados y se definen las condiciones del análisis:

- Estado de la muestra (pastilla).
- Tipo de aglomerante (Elvacite) y volumen utilizado de la misma (3,5 mL para el caso de las escorias y 1.8 mL para la aleación).
- Masa de la muestra a analizar (5 g tanto para la aleación como para la escoria).

Se utiliza para la detección de la señal un detector de flujo, por el que fluye constantemente una mezcla de gas de argón y metano ($Ar = 89 – 91 \%$ y $CH_4 = 9 – 11 \%$). Además se utiliza en el tubo de rayos X una ventana de rodio.

La calibración del equipo se efectúa con muestras monitores.

Para la determinación del contenido de carbono y azufre en la aleación se utilizó el analizador Leco CS – 225, el cual es un equipo para la determinación de estos elementos en hierro, acero y otros materiales por absorción molecular.

La muestra se quema en un horno de inducción de alta frecuencia en presencia de oxígeno, la concentración de los productos de la combustión se miden por absorción en la región infrarroja del espectro en celdas independientes para cada producto de combustión, en este caso CO_2 y SO_2. Se emplea como fuente de radiación un alambre de nicrom calentado a 850 º C. Se utiliza el método de calibración con patrones para determinar los elementos.

2.5. Diseño experimental.

Se elaboró un diseño experimental factorial 2^k aplicado a mezclas utilizando relaciones. La mezcla a evaluar estaba constituida por cuatro componentes, el
número de relaciones (k) resultó ser 3, por lo que la cantidad de experiencias fue \(2^3 = 8\). Se mantuvo como parámetro constante la pirolusita y parámetros variables las proporciones de caliza, cascarilla de laminación y aluminio, siendo las relaciones las que se muestran a continuación:

\[
Z_1 = \frac{X_1}{X_4} = \frac{m(Aluminio)}{m(Pirolusita)} \quad Z_2 = \frac{X_2}{X_4} = \frac{m(Cascarilla)}{m(Pirolusita)} \quad Z_3 = \frac{X_3}{X_4} = \frac{m(Caliza)}{m(Pirolusita)}
\]

El contenido de cascarilla se varió desde el 60 al 100 % de la masa teórica necesaria para que la aleación de ferromanganeso tuviera un 25 % de hierro, el aluminio estuvo comprendido entre el 80 y el 100 % de la masa teórica necesaria para reducir todo el \(\text{MnO}_2\), \(\text{SiO}_2\), \(\text{Fe}_3\text{O}_4\) y el \(\text{Fe}_2\text{O}_3\); el de caliza se varió desde el 5 al 12 % de la masa total de la mezcla.

Los valores de \(Z_1\), \(Z_2\) y \(Z_3\) fueron los siguientes:

- Nivel mínimo: \(Z_1 = 0.39\), \(Z_2 = 0.13\), \(Z_3 = 0.08\)
- Nivel máximo: \(Z_1 = 0.48\), \(Z_2 = 0.22\), \(Z_3 = 0.23\)

Se determinaron los valores de \(X_1\), \(X_2\), \(X_3\) y \(X_4\), los cuales no son más que las masas de cada uno de los componentes correspondientes a las ocho experiencias, obteniéndose la siguiente matriz del diseño experimental:

<table>
<thead>
<tr>
<th>Exp.</th>
<th>(Z_1)</th>
<th>(Z_2)</th>
<th>(Z_3)</th>
<th>(R)</th>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(X_3)</th>
<th>(X_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.60</td>
<td>240.0</td>
<td>80.0</td>
<td>50.0</td>
<td>630.0</td>
</tr>
<tr>
<td>2.</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>1.69</td>
<td>280.0</td>
<td>80.0</td>
<td>50.0</td>
<td>590.0</td>
</tr>
<tr>
<td>3.</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>1.69</td>
<td>230.0</td>
<td>130.0</td>
<td>50.0</td>
<td>590.0</td>
</tr>
<tr>
<td>4.</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>1.78</td>
<td>270.0</td>
<td>120.0</td>
<td>40.0</td>
<td>570.0</td>
</tr>
<tr>
<td>5.</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>1.75</td>
<td>220.0</td>
<td>70.0</td>
<td>130.0</td>
<td>580.0</td>
</tr>
<tr>
<td>6.</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>1.84</td>
<td>260.0</td>
<td>70.0</td>
<td>130.0</td>
<td>540.0</td>
</tr>
<tr>
<td>7.</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>1.84</td>
<td>210.0</td>
<td>120.0</td>
<td>130.0</td>
<td>540.0</td>
</tr>
<tr>
<td>8.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1.93</td>
<td>250.0</td>
<td>110.0</td>
<td>120.0</td>
<td>520.0</td>
</tr>
</tbody>
</table>

Tabla #2: Matriz del diseño y masa de cada componente para cada una de las experiencias.
Capítulo 3: Análisis y discusión de los resultados.

3.1. Resultados experimentales.

Fueron llevados a la práctica los ocho experimentos y se realizaron dos réplicas a cada punto. Las aleaciones y las escorias obtenidas fueron pesadas y se les determinó el porcentaje en masa de manganeso, así como el rendimiento de la síntesis y la recuperación del Mn en las mismas, obteniéndose los siguientes resultados.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Síntesis</th>
<th>Réplica 1</th>
<th>Réplica 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62.53</td>
<td>60.62</td>
<td>61.91</td>
</tr>
<tr>
<td>2</td>
<td>54.53</td>
<td>52.05</td>
<td>55.17</td>
</tr>
<tr>
<td>3</td>
<td>53.02</td>
<td>50.62</td>
<td>52.32</td>
</tr>
<tr>
<td>4</td>
<td>57.04</td>
<td>55.37</td>
<td>57.40</td>
</tr>
<tr>
<td>5</td>
<td>68.72</td>
<td>66.01</td>
<td>66.90</td>
</tr>
<tr>
<td>6</td>
<td>61.82</td>
<td>58.67</td>
<td>59.95</td>
</tr>
<tr>
<td>7</td>
<td>52.46</td>
<td>51.25</td>
<td>54.04</td>
</tr>
<tr>
<td>8</td>
<td>51.41</td>
<td>50.63</td>
<td>53.80</td>
</tr>
<tr>
<td>5(II)</td>
<td>67.02</td>
<td>66.13</td>
<td>66.64</td>
</tr>
</tbody>
</table>

Tabla # 3: Contenido de manganeso expresado en porcentaje en masa para la síntesis y cada una de las réplicas realizadas.

* 5(II): aleación obtenida a partir de la síntesis realizada con una mezcla reaccionante de igual composición que el experimento número 5, pero donde se sustituyó la caliza por escoria.
Capítulo 3: Análisis y discusión de los resultados

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Rendimiento de la síntesis</th>
<th>% Mn</th>
<th>Recuperación del Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70.0</td>
<td>62.02</td>
<td>52.1</td>
</tr>
<tr>
<td>2</td>
<td>83.7</td>
<td>53.92</td>
<td>54.7</td>
</tr>
<tr>
<td>3</td>
<td>53.2</td>
<td>51.99</td>
<td>36.9</td>
</tr>
<tr>
<td>4</td>
<td>66.8</td>
<td>56.60</td>
<td>49.9</td>
</tr>
<tr>
<td>5</td>
<td>69.8</td>
<td>67.21</td>
<td>55.8</td>
</tr>
<tr>
<td>6</td>
<td>72.6</td>
<td>60.15</td>
<td>52.5</td>
</tr>
<tr>
<td>7</td>
<td>63.9</td>
<td>52.58</td>
<td>44.9</td>
</tr>
<tr>
<td>8</td>
<td>80.4</td>
<td>51.95</td>
<td>55.2</td>
</tr>
<tr>
<td>5(II)</td>
<td>72.0</td>
<td>66.61</td>
<td>57.1</td>
</tr>
</tbody>
</table>

Tabla # 4: Rendimiento de la síntesis, % de manganeso en la aleación y recuperación de manganeso promedios para cada una de las experiencias.

Rendimiento promedio de la síntesis: 70.1 %

Contenido promedio de manganeso: 57.1 %

Recuperación promedio de manganeso: 50.3 %

Las escorias y las aleaciones fueron analizadas en ACINOX Las Tunas, mediante un método semicuantitativo, empleando la fluorescencia de rayos X. Los contenidos de carbono y azufre se determinaron con un analizador Leco mostrándose los resultados en los anexos # 3 y # 4.

3.2. Análisis del diseño experimental.

Para realizar el análisis estadístico del diseño experimental se tuvieron en cuenta los siguientes aspectos:

1. Aleatoriedad en la ejecución de los experimentos.

2. Normalidad de los datos.

3. Homogeneidad de varianza de los resultados experimentales.

El primero de los aspectos anteriores se garantizó en el muestreo, homogenizando las materias primas y tomando cantidades de diferentes zonas de
los recipientes donde se almacenan, así como realizando aleatoriamente las síntesis según la matriz del diseño experimental generada por el programa STATGRAPHICS Plus 4.1.

Para determinar si los resultados obtenidos se ajustaban a una distribución normal se recurrió a la distribución Kolmogorov – Smirnov con la corrección de la significación de Lilliefors, la cual se utiliza para poblaciones con menos de 100 elementos. La prueba se hizo para un nivel de confianza de 95 % utilizando el programa SPSS 8.0 para Windows.

Al emplear la distribución Kolmogorov – Smirnov con la corrección de Lilliefors se obtuvo un nivel de significación (\(\alpha \)) de 0.102, mayor que el valor prefijado (\(\alpha_0 = 0.05 \)), por lo que los datos se ajustan a una distribución normal.

Luego de haber sido demostrado el carácter normal de la distribución de los resultados experimentales, se realizó una prueba para comprobar la homogeneidad de varianza de los datos. Para lo anterior se utilizó el estadígrafo de Levene para un nivel de confianza de un 95 % utilizando el programa SPSS 8.0 para Windows.

Las hipótesis planteadas fueron:

\[
H_0: \sigma_1 = \sigma_2 = \sigma_3 \\
H_1: \exists_{i,j} \sigma_i \neq \sigma_j
\]

El valor de \(\alpha \) fue 0.084, el cual es mayor que el prefijado (\(\alpha_0 = 0.05 \)), cumpliéndose la hipótesis nula, es decir, las varianzas son homogéneas.

Después de haberse comprobado el carácter normal de la distribución y la homogeneidad de las varianzas de los resultados experimentales, se procedió a la evaluación del diseño estadístico utilizando como herramienta el programa STATGRAPHICS Plus 4.1.

La función respuesta empleada fue el porcentaje de manganeso en las aleaciones, incluyendo los resultados obtenidos en las dos réplicas realizadas a cada una de las experiencias.
Los valores de los porcentajes de manganeso en las aleaciones obtenidas en cada uno de los experimentos, incluyendo las réplicas, se muestran a continuación:

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Z₁</th>
<th>Z₂</th>
<th>Z₃</th>
<th>Porcentaje de Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>62.53 60.62 62.91</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>54.53 52.05 55.17</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>53.02 50.62 52.32</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>57.04 55.37 57.40</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>68.72 66.01 66.90</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>61.82 58.67 59.9</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>52.46 51.25 54.04</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>51.41 50.63 53.80</td>
</tr>
</tbody>
</table>

Tabla #5: Contenido de manganeso en la aleación expresado en porcentaje en masa.

El análisis estadístico del diseño experimental arrojó los siguientes resultados:

- % de Mn promedio = 57.0517 ± 0.326376
- A: aluminio = -2.79667 ± 0.652752
- B: cascarilla = -7.54333 ± 0.652752
- C: caliza = 1.84 ± 0.652752
- AB = 4.78667 ± 0.652752
- AC = -1.05333 ± 0.652752
- BC = -3.87 ± 0.652752

El coeficiente de la interacción aluminio:cascarilla:caliza (ABC), después de haber realizado el análisis del diseño, fue igual a cero.

Dados los coeficientes de los parámetros del diseño experimental, así como sus interacciones, se puede deducir la ecuación codificada de este:

$$y = 57.0 - 2.7X_A - 7.5X_B + 1.8X_C + 4.7X_AX_B - 1.0X_AX_C - 3.8X_BX_C \pm 1.6 \ (8)$$
En la ecuación anterior los valores de los coeficientes se redondearon de acuerdo con sus desviaciones estándar.

Análisis de la significación estadística de los coeficientes.

Se comprobó la significación estadística de cada coeficiente comparando la media cuadrada con un estimado del error experimental, formulándose las siguientes pruebas de hipótesis para cada uno de los coeficientes.

\[
\begin{align*}
H_0: A &= 0 & H_0: B &= 0 & H_0: C &= 0 & H_0: AB &= 0 & H_0: AC &= 0 & H_0: BC &= 0 \\
H_1: A &\neq 0 & H_1: B &\neq 0 & H_1: C &\neq 0 & H_1: AB &\neq 0 & H_1: AC &\neq 0 & H_1: BC &\neq 0
\end{align*}
\]

La significación estadística fue comprobada mediante la distribución F de Fisher, al calcularse los valores de \(\alpha\) para cada uno de ellos y compararlos con el valor prefijado \((\alpha_0 = 0.05)\).

<table>
<thead>
<tr>
<th>Coeficiente</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: aluminio</td>
<td>0.0007</td>
</tr>
<tr>
<td>B: cascarrilla</td>
<td>0.0000</td>
</tr>
<tr>
<td>C: caliza</td>
<td>0.0130</td>
</tr>
<tr>
<td>AB</td>
<td>0.0000</td>
</tr>
<tr>
<td>AC</td>
<td>0.1274</td>
</tr>
<tr>
<td>BC</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Tabla # 6: Valores de \(\alpha\) para cada uno de los coeficientes de los parámetros.

En este caso 5 efectos tienen valores de \(\alpha\) menores que 0.05 [aluminio, cascarrilla, caliza y las interacciones aluminio:cascarrilla (AB) y cascarrilla:caliza (BC)], por lo que se rechaza la hipótesis nula para cada uno de ellos indicando que son significativamente diferentes de cero con un 95 % de confiabilidad.

Para el coeficiente AC, interacción aluminio:caliza, el valor de \(\alpha\) es mayor que el prefijado por lo que se acepta la hipótesis nula, lo que significa que este es estadísticamente igual a cero.

Los resultados anteriores se confirman mediante el análisis del diagrama de Pareto, el cual muestra cada uno de los efectos estimados en orden decreciente.
Capítulo 3: Análisis y discusión de los resultados

La longitud de cada barra es proporcional a los efectos estandarizados. La línea vertical señala los efectos que son significativos. Las barras que se extiendan más allá de la línea se corresponden con los coeficientes que son estadísticamente significativos para un nivel de confianza del 95 %.

Luego de haber realizado el análisis de la significación estadística de los coeficientes y haber eliminado el correspondiente a la interacción aluminio:caliza (AC), la ecuación codificada del diseño quedó de la manera siguiente:

\[y = 57.0 - 2.7X_A - 7.5X_B + 1.8X_C + 4.7X_AX_B - 3.8X_BX_C \pm 1.6 \] \hspace{2cm} (9)

Para regresar a las variables originales \((Z_1, Z_2 \text{ y } Z_3)\) se descodifica la ecuación anterior teniendo en cuenta los valores máximos y mínimos de cada una de ellas y las expresiones de codificación:
La ecuación quedaría entonces como se muestra a continuación:

\[y = 254.7 - 466.2 Z_1 - 1001.8 Z_2 + 221.0 Z_3 + 2321.0 Z_1 Z_2 - 1125.9 Z_2 Z_3 \quad (11) \]

Análisis estadístico del modelo matemático.

Los parámetros estadísticos que se obtuvieron para el modelo matemático fueron:

\[R^2 = 94.4387 \% \]

\[R^2 \text{ ajustado} = 92.4758 \% \]

Estadígrafo Durbin-Watson = 2.29592

El estadígrafo \(R^2 \) indica que el modelo explica el 94.4% de la variabilidad en el porcentaje de manganeso. El estadígrafo \(R^2 \) ajustado, el cual es más recomendable para comparar modelos con números diferentes de variables independientes es 92.5%.

El estadígrafo Durbin Watson (DW) prueba los residuos para determinar si hay alguna correlación significativa basada en el orden en el cual ellos se encuentran en el diseño. Ya que el valor de DW es mayor que 1.4 no hay ninguna probabilidad seria de autocorrelación en los residuos, por lo que los resultados son independientes.

No se verificó la adecuación del modelo a los resultados experimentales ya que, aunque este quedó con menos coeficientes que número de experimentos,
estos se han eliminado sobre la base de la comparación estadística con sus errores experimentales. [11]

A continuación se muestra una tabla donde se comparan los valores de % de manganeso obtenidos experimentalmente y los calculados por el modelo matemático, así como un gráfico de los errores residuales en función del contenido de manganeso según el modelo.

<table>
<thead>
<tr>
<th>Exp. #</th>
<th>Valor observado</th>
<th>Valor calculado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>66.01</td>
<td>66.67</td>
</tr>
<tr>
<td>2.</td>
<td>55.17</td>
<td>53.38</td>
</tr>
<tr>
<td>3.</td>
<td>58.67</td>
<td>59.09</td>
</tr>
<tr>
<td>4.</td>
<td>51.25</td>
<td>50.47</td>
</tr>
<tr>
<td>5.</td>
<td>57.04</td>
<td>54.49</td>
</tr>
<tr>
<td>6.</td>
<td>60.62</td>
<td>60.96</td>
</tr>
<tr>
<td>7.</td>
<td>50.63</td>
<td>52.46</td>
</tr>
<tr>
<td>8.</td>
<td>50.62</td>
<td>52.50</td>
</tr>
<tr>
<td>9.</td>
<td>68.72</td>
<td>67.64</td>
</tr>
<tr>
<td>10.</td>
<td>52.05</td>
<td>54.35</td>
</tr>
<tr>
<td>11.</td>
<td>61.82</td>
<td>60.056</td>
</tr>
<tr>
<td>12.</td>
<td>52.46</td>
<td>51.44</td>
</tr>
<tr>
<td>13.</td>
<td>55.37</td>
<td>55.46</td>
</tr>
<tr>
<td>14.</td>
<td>62.91</td>
<td>61.93</td>
</tr>
<tr>
<td>15.</td>
<td>51.41</td>
<td>53.43</td>
</tr>
<tr>
<td>16.</td>
<td>53.02</td>
<td>53.47</td>
</tr>
<tr>
<td>17.</td>
<td>66.9</td>
<td>68.10</td>
</tr>
<tr>
<td>18.</td>
<td>54.53</td>
<td>54.81</td>
</tr>
<tr>
<td>19.</td>
<td>59.95</td>
<td>60.52</td>
</tr>
<tr>
<td>20.</td>
<td>54.04</td>
<td>51.90</td>
</tr>
<tr>
<td>21.</td>
<td>57.4</td>
<td>55.92</td>
</tr>
<tr>
<td>22.</td>
<td>62.53</td>
<td>62.39</td>
</tr>
<tr>
<td>23.</td>
<td>53.8</td>
<td>53.89</td>
</tr>
<tr>
<td>24.</td>
<td>52.32</td>
<td>53.93</td>
</tr>
</tbody>
</table>

Tabla # 7: Comparación entre los valores de % de manganeso observados experimentalmente y los calculados por el modelo matemático
Análisis y discusión de los resultados

Nota: Error residual = % de Mn observado - % de Mn calculado

En el anexo # 5 se muestran las superficies de respuesta de la ecuación del diseño experimental.

Análisis de la influencia de los factores en el contenido de manganeso en la aleación.

Como indica la ecuación # 11, el aluminio es un factor que influye negativamente sobre el porcentaje de manganeso en la aleación. Lo anterior se puede observar en la siguiente tabla, donde se compara el contenido de manganeso en las aleaciones obtenidas a partir de mezclas que tenían máximo de aluminio con aquellas en las que la proporción de este componente era mínima. (Ver además el anexo # 6)
Tabla # 8: Relación entre el contenido de aluminio en las mezclas aluminotérmicas y el porcentaje promedio de manganeso en la aleación.

La influencia negativa del aluminio sobre el contenido de manganeso se confirma mediante el siguiente gráfico, donde se representa el porcentaje promedio de manganeso contra los valores máximo y mínimo del agente reductor en el sistema reaccionante.

Gráfica #3: Efecto del aluminio sobre el % de Mn

El aluminio es el agente reductor en la síntesis y un exceso de él debería permitir que todos los óxidos se redujeran, teniendo por tanto una influencia positiva sobre el contenido de manganeso en la aleación, sin embargo, los resultados experimentales demuestran lo contrario. Lo anterior puede deberse a

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Z₁ (Al)</th>
<th>% Mn promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>62.02</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>51.99</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>67.21</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>52.58</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>53.92</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>56.60</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>60.15</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>51.95</td>
</tr>
<tr>
<td>Promedio (Exp.1, 3, 5, 7)</td>
<td>58.45</td>
<td></td>
</tr>
<tr>
<td>Promedio (Exp.2, 4, 6, 8)</td>
<td>55.66</td>
<td></td>
</tr>
</tbody>
</table>
que durante la reacción se alcanzan altas temperaturas, por encima de los 1 250 ºC; el MnO₂ comienza a descomponerse a partir de los 527 ºC según las ecuaciones II, III y IV, por lo que se necesitaría menos aluminio para reducir los óxidos quedando entonces un exceso de dicho elemento en el sistema. Este forma dos combinaciones con el manganeso, Al₅Mn y Al₃Mn y un eutéctico que funde a 650 ºC y pasa a formar parte del ferromanganeso, disminuyendo por tanto el porciento de manganeso en la aleación.

Lo antes explicado puede ser también la causa de que el contenido de aluminio en el ferromanganeso es mayor para aquellas aleaciones obtenidas de mezclas con un máximo de este elemento, como se observa en la siguiente tabla donde se compara el porciento de aluminio en las aleaciones obtenidas a partir de mezclas que tenían máximo de este componente, con aquellas en las que era mínimo.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Z₁ (Al)</th>
<th>% Al promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>3.56</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>4.71</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>1.45</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>5.68</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>14.23</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>2.62</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>7.75</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>13.17</td>
</tr>
<tr>
<td>Promedio (Exp.1, 3, 5, 7)</td>
<td>3.85</td>
<td></td>
</tr>
<tr>
<td>Promedio (Exp.2, 4, 6, 8)</td>
<td>9.44</td>
<td></td>
</tr>
</tbody>
</table>

Tabla # 9: Relación entre el contenido de aluminio en las mezclas aluminotérmicas y el porciento promedio de este elemento en la aleación.

Es necesario destacar que la influencia negativa del aluminio sobre el contenido de manganeso en la aleación es relativa, ya que este es el agente reductor de los óxidos y un defecto muy marcado de él afectaría negativamente los procesos de reducción.
Otro factor que tiene una influencia desfavorable sobre la función respuesta es la cascarilla de laminación, como lo demuestra la ecuación # 11 donde el coeficiente correspondiente a esta variable es negativo. Lo anterior se puede observar en la siguiente tabla, donde se compara el contenido de manganeso en las aleaciones obtenidas a partir de mezclas que tenían máximo de cascarilla con aquellas en las que la proporción de este componente era mínima. (Ver además el anexo # 6)

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Z_2 (cascarilla)</th>
<th>%Mn promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>62.02</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>53.92</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>67.21</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>60.15</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>51.99</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>56.60</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>52.58</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>51.95</td>
</tr>
<tr>
<td>Promedio (Exp.1, 2, 5, 6)</td>
<td>60.83</td>
<td></td>
</tr>
<tr>
<td>Promedio (Exp.3, 4, 7, 8)</td>
<td>53.28</td>
<td></td>
</tr>
</tbody>
</table>

Tabla # 10: Relación entre el contenido de cascarilla en las mezclas aluminotérmicas y el porciento promedio de manganeso en la aleación.

La influencia negativa de la cascarilla sobre el contenido de manganeso se confirma mediante el siguiente gráfico, donde se representa el porciento promedio de manganeso contra los valores máximo y mínimo de cascarilla en el sistema reaccionante.
Como promedio una mayor masa de cascarilla en la carga hace que aumente el porciento de hierro en la ferroaleación y produce por tanto una disminución del contenido de manganeso en la misma.

La caliza es el único factor que influye positivamente sobre el porciento de manganeso en la aleación. Los ferromanganesos obtenidos mediante las síntesis con valores máximos de caliza presentaron mejores resultados de la función respuesta que en el caso en que se utilizaron niveles mínimos, lo cual resulta lógico ya que la caliza para su descomposición consume parte del calor liberado en el transcurso de la reacción, el que provoca pérdidas de manganeso por volatilización si la temperatura es muy alta (la reacción entre el MnO₂ y el Al puede llegar a alcanzar una temperatura de 4 993 °C y la temperatura de ebullición del Mn a 101.325 Kpa es 2 150 °C). Además el CaO producido por la descomposición del CaCO₃ hace que disminuya la viscosidad del lecho de reacción posibilitando una mejor separación entre la aleación y la escoria.

La siguiente tabla, donde se representa la relación entre el contenido de caliza en las mezclas aluminotérmicas y el porciento promedio de manganeso en la aleación, corrobora lo expuesto en el párrafo anterior. (Ver además el anexo # 6)
Capítulo 3: Análisis y discusión de los resultados

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Z_{3} (caliza)</th>
<th>%Mn promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>62.02</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>53.92</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>51.99</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>56.60</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>67.21</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>60.15</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>52.58</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>51.95</td>
</tr>
<tr>
<td></td>
<td>Promedio (Exp.1, 2, 5, 6)</td>
<td>56.13</td>
</tr>
<tr>
<td></td>
<td>Promedio (Exp.3, 4, 7, 8)</td>
<td>57.97</td>
</tr>
</tbody>
</table>

Tabla #11: Relación entre el contenido de caliza en las mezclas aluminotérmicas y el porcento promedio de manganeso en la aleación.

En el gráfico mostrado a continuación se confirma lo expuesto en la tabla anterior.

Gráfico #5: Efecto de la caliza sobre el % de Mn

Todo lo explicado anteriormente se ratifica cuando se analizan los gráficos que representan la dependencia entre el porciento de manganeso y las interacciones significativas estadísticamente.
En la gráfica donde se visualiza la influencia de la interacción aluminio:cascarilla se observa que cuando estos dos factores son mínimos se obtiene mayor contenido de manganeso en la aleación, sin embargo cuando los dos tienen su nivel máximo el porcentaje de manganeso en la aleación es menor.
Cuando el nivel de cascarilla es máximo, se obtiene una mayor cantidad de manganeso en la aleación si el aluminio es máximo en la mezcla reaccionante. Este comportamiento es lógico debido a que al mantenerse constante la proporción de MnO₂ en el sistema reaccionante y el de cascarilla estar en el máximo, se hace necesaria la presencia de una mayor cantidad de agente reductor.

En la representación gráfica del efecto de la interacción entre la caliza y la cascarilla se observa que, cuando hay un contenido mínimo de cascarilla en la mezcla reaccionante, ya sea para altas o bajas concentraciones de caliza, se obtienen mayores porcentajes de manganeso en la aleación en comparación con los experimentos en los que se utilizó máximo de cascarilla.

La experiencia en la que se utilizaron los niveles mínimos de cascarilla y aluminio y máximo de caliza resultó ser la de mayor porcentaje de manganeso en la aleación, corroborándose la concordancia entre los valores experimentales y el modelo matemático utilizado, por lo que el experimento número cinco resultó ser el mejor, en el cual, además, se obtuvieron valores de rendimiento de síntesis y recuperación de manganeso iguales a los valores promedios de estos parámetros, así como debido a que la reacción se verificó de manera controlada.

Los resultados del experimento seis también están cercanos a los valores medios de los parámetros analizados, pero no se selecciona como el mejor por ser el porcentaje de manganeso en la aleación menor que el del experimento cinco, y esta característica es la más importante de la aleación.

La segunda experiencia resultó ser la reacción más violenta de las ocho, siendo esto un aspecto negativo para su posterior escalado. Dicho comportamiento se debe a que la mezcla reaccionante tenía un contenido máximo de aluminio y mínimo del resto de los componentes.

A partir de los resultados que se pueden obtener de la ecuación # 9, en las tablas siguientes se muestra la región, comenzando desde el valor promedio de los resultados experimentales, a través de la cual la respuesta estimada (% de Mn) cambia más rápidamente para las menores variaciones de los factores
experimentales. Estos resultados son una buena indicación para nuevas corridas de las experiencias en las cuales se quiera aumentar o disminuir el contenido de manganeso, permitiendo comparar los valores que se obtienen en la práctica con los estimados por el modelo matemático. Para cada conjunto de resultados se determina también cuanto se debe variar cada uno de los otros factores. Los incrementos son de 0.1 unidades de la variable codificada.

<table>
<thead>
<tr>
<th>Aluminio</th>
<th>Cascarilla</th>
<th>Caliza</th>
<th>% de Mn esperado</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>57.0517</td>
</tr>
<tr>
<td>-0.177871</td>
<td>0.370474</td>
<td>0.1</td>
<td>58.9818</td>
</tr>
<tr>
<td>-0.379884</td>
<td>-0.677126</td>
<td>0.2</td>
<td>61.0834</td>
</tr>
<tr>
<td>-0.586282</td>
<td>-0.944147</td>
<td>0.3</td>
<td>63.3736</td>
</tr>
<tr>
<td>-0.791737</td>
<td>-1.18553</td>
<td>0.4</td>
<td>65.8575</td>
</tr>
<tr>
<td>-0.994826</td>
<td>-1.4092</td>
<td>0.5</td>
<td>68.5355</td>
</tr>
<tr>
<td>-1.19528</td>
<td>-1.61994</td>
<td>0.6</td>
<td>71.4068</td>
</tr>
<tr>
<td>-1.3932</td>
<td>-1.82082</td>
<td>0.7</td>
<td>74.4698</td>
</tr>
</tbody>
</table>

Tabla # 12: Variación del % de Mn al aumentar la cantidad de caliza en 0.1 unidades (variables codificadas).

<table>
<thead>
<tr>
<th>Aluminio</th>
<th>Cascarilla</th>
<th>Caliza</th>
<th>% de Mn esperado</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>57.0517</td>
</tr>
<tr>
<td>-0.0476607</td>
<td>-0.105385</td>
<td>0.1</td>
<td>55.1517</td>
</tr>
<tr>
<td>-0.815357</td>
<td>0.0986053</td>
<td>0.2</td>
<td>59.5095</td>
</tr>
<tr>
<td>-0.722459</td>
<td>0.0857451</td>
<td>0.3</td>
<td>58.8674</td>
</tr>
<tr>
<td>-0.630014</td>
<td>0.0779937</td>
<td>0.4</td>
<td>58.2768</td>
</tr>
<tr>
<td>-0.538477</td>
<td>0.0762006</td>
<td>0.5</td>
<td>57.7355</td>
</tr>
<tr>
<td>-0.448509</td>
<td>0.0813439</td>
<td>0.6</td>
<td>57.2406</td>
</tr>
<tr>
<td>0.361042</td>
<td>0.0945033</td>
<td>0.7</td>
<td>56.7886</td>
</tr>
</tbody>
</table>

Tabla # 13: Variación del % de Mn al aumentar la cantidad de aluminio en 0.1 unidades (variables codificadas).
<table>
<thead>
<tr>
<th>Aluminio</th>
<th>Cascarilla</th>
<th>Caliza</th>
<th>% de Mn esperado</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>57.0517</td>
</tr>
<tr>
<td>0.0338202</td>
<td>0.1</td>
<td>-0.0237877</td>
<td>56.615</td>
</tr>
<tr>
<td>0.0605473</td>
<td>0.2</td>
<td>-0.0464385</td>
<td>56.2044</td>
</tr>
<tr>
<td>0.079855</td>
<td>0.3</td>
<td>-0.0681921</td>
<td>55.8136</td>
</tr>
<tr>
<td>0.0914939</td>
<td>0.4</td>
<td>-0.0893242</td>
<td>55.4363</td>
</tr>
<tr>
<td>0.0953073</td>
<td>0.5</td>
<td>-0.110137</td>
<td>55.0656</td>
</tr>
<tr>
<td>0.0912423</td>
<td>0.6</td>
<td>-0.130947</td>
<td>54.6948</td>
</tr>
<tr>
<td>0.0793528</td>
<td>0.7</td>
<td>-0.152071</td>
<td>54.3169</td>
</tr>
</tbody>
</table>

Tabla # 14: Variación del % de Mn al aumentar la cantidad de cascarilla en 0.1 unidades (variables codificadas).

El experimento 5 también se realizó empleando como fundente la escoria obtenida en las síntesis anteriores en lugar de la caliza (en la misma proporción de esta), y se hicieron además dos replicas de esta variante. Las escorias y aleaciones obtenidas también fueron analizadas por fluorescencia de rayos X y se utilizó el analizador Leco para la determinación de carbono y azufre.

Se efectuó una comparación entre los dos métodos en cuanto a: rendimiento de la síntesis, recuperación de manganeso y % de manganeso en la aleación mediante el programa SPSS 8.0 para Windows.

Se planteó la siguiente hipótesis para determinar homogeneidad de varianza mediante el estadígrafo F de Fisher para cada uno de los parámetros anteriores:

\[H_0: \sigma_1 = \sigma_2, \]
\[H_1: \sigma_1 \neq \sigma_2 \]
Con el objetivo de comparar las medias de las dos variantes mediante el estadigrafo t’ de Student, para cada uno de los tres factores, se planteó la prueba de hipótesis que aparece a continuación:

\[H_0: \mu_1 = \mu_2 \]
\[H_1: \mu_1 \neq \mu_2 \]

Para el rendimiento de la síntesis el estadígrafo F de Fisher dio una significación (\(\alpha\)) de 0.948, mayor que el prefijado (\(\alpha_0 = 0.05\)) por lo que se cumple la hipótesis nula, indicando que las varianzas son homogéneas. El valor de \(\alpha\) para el estadígrafo t’ de Student fue de 0.081, mayor que 0.05, por lo que se acepta la hipótesis nula no existiendo diferencias significativas entre los rendimientos obtenidos por las dos variantes, siendo estos, por tanto, estadísticamente iguales.

El porcentaje de recuperación de manganeso también fue analizado mediante estos estadígrafos siendo la significación para el análisis de varianzas (0.554), mayor que el valor prefijado (\(\alpha_0 = 0.05\)), cumpliéndose así la hipótesis nula existiendo, por tanto, homogeneidad de varianzas. El valor de \(\alpha\) para la t’ de Student fue de 0.081, mayor que 0.05, de lo que se deduce que no hay diferencias significativas entre los porcentajes de recuperación de las dos poblaciones, siendo por tanto estadísticamente iguales.

Por último se analizaron los resultados de estas pruebas para el porcentaje de manganeso en la aleación. La comprobación de la homogeneidad (estadígrafo F de Fisher) dio como resultado una significación de 0.153, mayor que 0.05, por lo que se cumple la hipótesis nula, las varianzas son homogéneas. La significación para el estadígrafo t’ de Student fue de 0.518, también mayor que 0.05, por lo que se acepta la hipótesis nula con lo que se demuestra que no hay diferencias significativas entre los porcentajes de manganeso en las aleaciones obtenidas por las dos variantes desarrolladas.

De lo anterior se deduce que no hay diferencias significativas en cuanto a los parámetros analizados, por lo que pueden ser utilizados ambos métodos para obtener este tipo de aleaciones alcanzándose resultados similares en cuanto al porcentaje de manganeso. Debido a esto es posible emplear la variante donde se
utiliza la escoria como fundente, con la particularidad de que se alcanzan mejores resultados en cuanto al contenido de algunos elementos (S, C y Al), los cuales afectan las propiedades y determinados usos de las posteriores aleaciones obtenidas. A modo de comparación se muestra la siguiente tabla donde aparecen los parámetros anteriormente analizados y los porcentajes en masa de los elementos perjudiciales.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Rendimiento síntesis</th>
<th>Recuperación de Mn</th>
<th>% Mn</th>
<th>% C</th>
<th>% Al</th>
<th>% P</th>
<th>% Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>5(II)</td>
<td>72</td>
<td>57.08</td>
<td>66.61</td>
<td>0.038</td>
<td>0.43</td>
<td>0.11</td>
<td>8.14</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>55.83</td>
<td>67.21</td>
<td>0.068</td>
<td>1.45</td>
<td>0.11</td>
<td>6.61</td>
</tr>
</tbody>
</table>

Tabla # 15: Comparación entre las aleaciones obtenidas con caliza como fundente (5) y la sintetizada utilizando escoria [5(II)].

Como se puede apreciar en la tabla anterior, el ferromanganeso obtenido empleando escoria como fundente tiene un 1.53 % más de silicio, pero esto no representa una dificultad para su posterior utilización en la fabricación de aceros, donde favorece la desoxidación.

3.3. Balance de masas.

Se realizó un balance de masas teórico para los ocho experimentos tomando como base las composiciones de las materias primas, para lo cual se consideró que:

1. La reducción del MnO₂, SiO₂, Fe₂O₃ y el Fe₃O₄ fue del 100 %.
2. Todo el Al se oxidó a Al₂O₃. En los casos en los cuales existía aluminio en exceso, la cantidad de este que estaba en demasia no se oxidó.
3. En los casos en que existía un defecto de aluminio parte del oxígeno de los óxidos que no se redujeron se liberó en forma de O₂ debido a la descomposición térmica de estos.
4. Todo el carbonato de calcio presente en la caliza se descompuso para dar lugar a la formación de CO$_2$ y CaO.

A partir de estas consideraciones se llegó a los resultados reflejados en las tablas mostradas en el anexo # 7, donde se compara el balance teórico con lo observado experimentalmente.

Si analizamos el referido anexo se puede observar que la consideración que se tuvo, para realizar el balance de masas, de que todos los óxidos fueran reducidos totalmente por el aluminio no se cumplió como era lógico esperar. No fue reducido el 100 % del MnO$_2$ a Mn (el porcentaje de conversión de este óxido osciló entre 36,9 y 55,83 %) pasando parte del primero a la escoria siendo cuantificado como MnO, igual ocurrió con el Fe$_2$O$_3$ y el Fe$_3$O$_4$ (aproximadamente entre el 69,45 y 96,54% de reducción), lo que trajo como consecuencia que las aleaciones tuvieran contenidos de hierro y manganeso menores que los esperados.

Además, el aluminio al reaccionar con los óxidos de la mezcla debe transformarse y pasar a la escoria como Al$_2$O$_3$. En la práctica no todo el aluminio se oxidó y quedó una fracción de este como componente de la aleación.

Por último es necesario mencionar que el SiO$_2$ tampoco se redujo totalmente, parte del mismo se detectó en la escoria y el resto reaccionó con el aluminio o se descompuso térmicamente, dando lugar a la formación de Si, el cual pasó a formar parte de la aleación, de manera tal que no se cumplió la consideración de que la aleación solo estuviera constituida por Fe y Mn. Otros elementos como el P, Zn, Mg y Cu fueron encontrados también como componentes del ferromangeno.

Teniendo en cuenta los datos del balance de masas se puede llegar a la composición teórica de la aleación considerando que solo está constituida por hierro y manganeso, comparándose estos resultados con los obtenidos experimentalmente lo cual se resume en la tabla # 16.

En la tabla antes mencionada se observan las diferencias que existen entre las composiciones teóricas y experimentales de las aleaciones, siendo estas más
acentuadas en el caso del manganeso. En la práctica se obtienen menores masas tanto de hierro como de manganeso debido a que, como se explicó anteriormente, no es reducido el 100% de los óxidos (MnO₂, Fe₂O₃ y Fe₃O₄). Además estas diferencias pueden estar debidas a posibles pérdidas por volatilización al alcanzar el sistema muy altas temperaturas y a las producidas durante el proceso de preparación de las mezclas.

Nota: en las tablas que siguen “T” se refiere a la masa calculada teóricamente y “E” a la determinada experimentalmente.

<table>
<thead>
<tr>
<th>Sust.</th>
<th>Exp. # 1</th>
<th>Exp. # 2</th>
<th>Exp. # 3</th>
<th>Exp. # 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>E</td>
<td>T</td>
<td>E</td>
</tr>
<tr>
<td>Fe</td>
<td>62.67</td>
<td>59.03</td>
<td>62.57</td>
<td>55.69</td>
</tr>
<tr>
<td></td>
<td>99.71</td>
<td>66.59</td>
<td>90.30</td>
<td>72.48</td>
</tr>
<tr>
<td>Mn</td>
<td>306.84</td>
<td>159.45</td>
<td>287.54</td>
<td>156.69</td>
</tr>
<tr>
<td></td>
<td>287.37</td>
<td>105.75</td>
<td>276.14</td>
<td>138.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sust.</th>
<th>Exp. # 5</th>
<th>Exp. # 6</th>
<th>Exp. # 7</th>
<th>Exp. # 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>E</td>
<td>T</td>
<td>E</td>
</tr>
<tr>
<td>Fe</td>
<td>55.22</td>
<td>51.21</td>
<td>55.13</td>
<td>47.78</td>
</tr>
<tr>
<td></td>
<td>89.82</td>
<td>77.81</td>
<td>82.76</td>
<td>66.58</td>
</tr>
<tr>
<td>Mn</td>
<td>282.48</td>
<td>157.28</td>
<td>263.19</td>
<td>137.80</td>
</tr>
<tr>
<td></td>
<td>263.01</td>
<td>128.30</td>
<td>252.79</td>
<td>139.39</td>
</tr>
</tbody>
</table>

Tabla # 16: Comparación entre las masas teóricas de los elementos que constituyen la aleación (Fe, Mn) y las obtenidas experimentalmente.

También se exponen en la tabla # 17 las composiciones teóricas de las escorias y se comparan con las obtenidas prácticamente.

Puede apreciarse tanto en el anexo # 3 como en el la tabla que aparece a continuación que la constitución de la escoria es de gran complejidad, siendo su componente principal el Al₂O₃ el cual le aporta propiedades abrasivas a la misma, siendo esto de gran importancia para su posterior aplicación en la fabricación de muelas abrasivas de usos diferentes.
<table>
<thead>
<tr>
<th>Sust.</th>
<th>Exp. # 1</th>
<th>Exp. # 2</th>
<th>Exp. # 3</th>
<th>Exp. # 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>E</td>
<td>T</td>
<td>E</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.00</td>
<td>41.45</td>
<td>0.00</td>
<td>29.95</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>424.66</td>
<td>332.96</td>
<td>477.10</td>
<td>337.78</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.00</td>
<td>28.44</td>
<td>0.00</td>
<td>30.97</td>
</tr>
<tr>
<td>CaO</td>
<td>40.20</td>
<td>28.29</td>
<td>39.40</td>
<td>24.98</td>
</tr>
<tr>
<td>MgO</td>
<td>2.37</td>
<td>2.24</td>
<td>2.23</td>
<td>5.14</td>
</tr>
<tr>
<td>P</td>
<td>0.69</td>
<td>0.00</td>
<td>0.65</td>
<td>0.00</td>
</tr>
<tr>
<td>Si</td>
<td>35.61</td>
<td>0.00</td>
<td>35.51</td>
<td>0.00</td>
</tr>
<tr>
<td>Cu</td>
<td>8.40</td>
<td>0.00</td>
<td>9.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Zn</td>
<td>1.44</td>
<td>0.00</td>
<td>1.68</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mg</td>
<td>1.20</td>
<td>0.00</td>
<td>1.40</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>0.00</td>
<td>0.00</td>
<td>7.93</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.00</td>
<td><</td>
<td>0.00</td>
<td><</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>168.90</td>
<td>0.00</td>
<td>144.30</td>
</tr>
<tr>
<td>CuO</td>
<td>0.00</td>
<td>1.18</td>
<td>0.00</td>
<td>1.16</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.00</td>
<td>0.52</td>
<td>0.00</td>
<td>0.69</td>
</tr>
<tr>
<td>Sust.</td>
<td>Exp. # 5</td>
<td>Exp. # 6</td>
<td>Exp. # 7</td>
<td>Exp. # 8</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.00</td>
<td>37.75</td>
<td>0.00</td>
<td>36.66</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>390.37</td>
<td>319.07</td>
<td>435.32</td>
<td>347.35</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.00</td>
<td>24.88</td>
<td>0.00</td>
<td>26.23</td>
</tr>
<tr>
<td>CaO</td>
<td>83.36</td>
<td>49.65</td>
<td>82.46</td>
<td>52.61</td>
</tr>
<tr>
<td>MgO</td>
<td>2.74</td>
<td>4.30</td>
<td>2.61</td>
<td>4.94</td>
</tr>
<tr>
<td>P</td>
<td>0.64</td>
<td>0.00</td>
<td>0.59</td>
<td>0.00</td>
</tr>
<tr>
<td>Si</td>
<td>32.85</td>
<td>0.00</td>
<td>32.85</td>
<td>0.00</td>
</tr>
<tr>
<td>Cu</td>
<td>7.70</td>
<td>0.00</td>
<td>9.10</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Zn</td>
<td>1.32</td>
<td>0.00</td>
<td>1.56</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mg</td>
<td>1.10</td>
<td>0.00</td>
<td>1.30</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>0.00</td>
<td>0.00</td>
<td>11.42</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.00</td>
<td><</td>
<td>0.00</td>
<td><</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>134.49</td>
<td>0.00</td>
<td>116.91</td>
</tr>
<tr>
<td>CuO</td>
<td>0.00</td>
<td>2.45</td>
<td>0.00</td>
<td>2.52</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.00</td>
<td>1.18</td>
<td>0.00</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Tabla # 17: Comparación entre las masas teórica y experimental de las sustancias que deben pasar a la escoria en cada una de las experiencias.

Por último es posible determinar la composición teórica de los gases, se considera que están compuestos solo por CO₂, O₂ y H₂O. En la tabla # 18 se muestra los valores teóricos de las masas de estas sustancias.
<table>
<thead>
<tr>
<th>Sust.</th>
<th>Exp. # 1</th>
<th>Exp. # 2</th>
<th>Exp. # 3</th>
<th>Exp. # 4</th>
<th>Exp. # 5</th>
<th>Exp. # 6</th>
<th>Exp. # 7</th>
<th>Exp. # 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>H₂O</td>
<td>55.96</td>
<td>52.40</td>
<td>52.40</td>
<td>50.02</td>
<td>51.49</td>
<td>47.96</td>
<td>47.96</td>
<td>46.07</td>
</tr>
<tr>
<td>CO₂</td>
<td>21.66</td>
<td>21.58</td>
<td>21.68</td>
<td>17.10</td>
<td>56.40</td>
<td>56.30</td>
<td>56.42</td>
<td>51.74</td>
</tr>
<tr>
<td>O₂</td>
<td>38.30</td>
<td>0.00</td>
<td>44.03</td>
<td>0.00</td>
<td>34.30</td>
<td>0.00</td>
<td>43.80</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Tabla # 18: Masas teóricas de los gases (H₂O, CO₂, O₂) para cada uno de los experimentos realizados.

Como se muestra en la tabla anterior, una buena parte de la masa inicial de la mezcla es liberada en forma de gases (aproximadamente entre el 7 y el 15 % de la masa inicial), en su mayoría como H₂O. Este desprendimiento gaseoso afecta los resultados experimentales ya que contribuye a las pérdidas de mezcla por arrastre, lo cual se verificó, aunque no se cuantificó, en todos los experimentos realizados.
Conclusiones.

Luego de haber realizado los experimentos y analizados los resultados se arribaron a las siguientes conclusiones:

- Es posible la obtención de ferromanganeso de bajo contenido de carbono y con más del 65 % de manganeso, por reducción aluminotérmica a partir de materias primas cubanas (pirolusita, virutas de aluminio, cascarilla de laminación y caliza).

- El aluminio y la cascarilla de laminación influyen negativamente sobre el porciento de manganeso en las aleaciones, mientras que la caliza lo hace positivamente.

- Los mejores resultados se alcanzaron en el experimento # 5 en el cual los contenidos de aluminio y de cascarilla de laminación eran mínimos y el de caliza máximo.

- Se obtienen resultados similares al realizar la síntesis sustituyendo la caliza por escoria disminuyendo en este último caso el contenido de aluminio y carbono y aumentando el de silicio.

- La reducción del MnO₂, SiO₂, Fe₂O₃ y Fe₃O₄ no fue del 100 %.
Recomendaciones.

Como resultado final del trabajo proponemos las siguientes recomendaciones:

- Ajustar la granulometría de las materias primas, fundamentalmente del aluminio, para propiciar el incremento del contenido de caliza en la mezcla.

- Realizar un estudio de la influencia en la aleación del contenido de silicio en el aluminio, el cual debe incluir la composición química de este material.

- Estudiar hasta qué valor se puede disminuir el contenido de aluminio en la mezcla aluminotérmica para hacer decrecer el porciento de este elemento en la ferroaleación e incrementar el de manganeso.
Referencias bibliográficas.

No.

5. Chen, Y., Lawrence, F., V., “Porosity in Thermite Welds”; Civil and Environmental Engineering Department, University of Illinois, Urbana-Champaign.

14. Quintana Puchol, R., Monografía “Espectrometría de Fluorescencia de Rayos X”

17. Rodríguez, E., et. Al., “Estudio de la obtención de níquel metálico por aluminotermia”, Informe de Investigación Terminada, Centro de Investigaciones de Soldadura, Universidad Central “Marta Abreu” de Las Villas, 1 995, pp. 1 – 3.

Referencias bibliográficas

No.
No.

Anexos.

Anexo # 1

Diagrama de Ellingham
Anexo # 2

Composición de las materias primas utilizadas (expresada en porciento en masa).

<table>
<thead>
<tr>
<th>Componente</th>
<th>Pirolusita</th>
<th>Caliza</th>
<th>Aluminio</th>
<th>Cascarilla de laminación</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>8.60</td>
<td>0.34</td>
<td>0.00</td>
<td>1 – 2</td>
</tr>
<tr>
<td>MnO₂</td>
<td>76.86</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>2.06</td>
<td>0.23</td>
<td>0.00</td>
<td>1 – 2</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.17</td>
<td>0.17</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>2.00</td>
<td>55.20</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MgO</td>
<td>0.32</td>
<td>0.68</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P</td>
<td>0.11</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>H₂O</td>
<td>8.88</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Si</td>
<td>0.00</td>
<td>0.00</td>
<td>3.5 – 4</td>
<td>0.00</td>
</tr>
<tr>
<td>Cu</td>
<td>0.00</td>
<td>0.00</td>
<td>2.5 – 3.5</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.00</td>
<td>0.00</td>
<td>0.3 – 0.35</td>
<td>0.00</td>
</tr>
<tr>
<td>Zn</td>
<td>0.00</td>
<td>0.00</td>
<td>0.5 – 0.6</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe</td>
<td>0.00</td>
<td>0.00</td>
<td>0.5 – 0.6</td>
<td>70 *</td>
</tr>
<tr>
<td>Mg</td>
<td>0.00</td>
<td>0.00</td>
<td>0.3 – 0.5</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>0.00</td>
<td>0.00</td>
<td>92.4 – 90.45</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* La cascarilla de laminación está constituida, en su mayor parte, por Fe₃O₄ conteniendo muy cerca del 70 % de hierro. [2]
Anexo # 3

Caracterización química de las escorias.

Normalizado a 100 %

<table>
<thead>
<tr>
<th>No.</th>
<th>Compuesto</th>
<th>Esc. # 1</th>
<th>Esc. # 2</th>
<th>Esc. # 3</th>
<th>Esc. # 4</th>
<th>Esc. # 5</th>
<th>Esc. # 5 II</th>
<th>Esc. # 6</th>
<th>Esc. # 7</th>
<th>Esc. # 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>C</td>
<td>0.056</td>
<td>0.057</td>
<td>0.04</td>
<td>0.046</td>
<td>0.11</td>
<td>0.055</td>
<td>0.075</td>
<td>0.064</td>
<td>0.078</td>
</tr>
<tr>
<td>2.</td>
<td>Na₂O</td>
<td>0.484</td>
<td>0.55</td>
<td>0.522</td>
<td>0.512</td>
<td>0.577</td>
<td>0.654</td>
<td>0.572</td>
<td>0.552</td>
<td>0.58</td>
</tr>
<tr>
<td>3.</td>
<td>MgO</td>
<td>0.365</td>
<td>0.875</td>
<td>0.675</td>
<td>0.741</td>
<td>0.733</td>
<td>1.026</td>
<td>0.826</td>
<td>0.744</td>
<td>0.761</td>
</tr>
<tr>
<td>4.</td>
<td>Al₂O₃</td>
<td>54.193</td>
<td>57.534</td>
<td>49.377</td>
<td>58.246</td>
<td>54.412</td>
<td>56.34</td>
<td>58.095</td>
<td>51.637</td>
<td>56.846</td>
</tr>
<tr>
<td>6.</td>
<td>P₂O₅</td>
<td><<</td>
<td><<</td>
<td>0.031</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
</tr>
<tr>
<td>7.</td>
<td>S</td>
<td>0.054</td>
<td>0.06</td>
<td>0.058</td>
<td>0.068</td>
<td>0.052</td>
<td>0.051</td>
<td>0.059</td>
<td>0.051</td>
<td>0.058</td>
</tr>
<tr>
<td>8.</td>
<td>Cl</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
</tr>
<tr>
<td>9.</td>
<td>K₂O</td>
<td>-</td>
<td>0.16</td>
<td>0.1</td>
<td>0.159</td>
<td>0.167</td>
<td>-</td>
<td>0.136</td>
<td>0.124</td>
<td>0.15</td>
</tr>
<tr>
<td>11.</td>
<td>TiO₂</td>
<td>0.102</td>
<td>0.097</td>
<td>0.111</td>
<td>0.124</td>
<td>0.128</td>
<td>0.13</td>
<td>0.097</td>
<td>0.113</td>
<td>0.081</td>
</tr>
<tr>
<td>12.</td>
<td>Cr₂O₃</td>
<td>0.49</td>
<td>0.62</td>
<td>0.439</td>
<td>0.535</td>
<td>0.367</td>
<td>0.566</td>
<td>0.278</td>
<td>0.368</td>
<td>0.408</td>
</tr>
<tr>
<td>15.</td>
<td>NiO</td>
<td>0.054</td>
<td>0.061</td>
<td><<</td>
<td>0.075</td>
<td>0.047</td>
<td>0.057</td>
<td>0.047</td>
<td>0.065</td>
<td>0.054</td>
</tr>
<tr>
<td>16.</td>
<td>CuO</td>
<td>0.192</td>
<td>0.197</td>
<td>0.264</td>
<td>-</td>
<td>0.417</td>
<td>0.308</td>
<td>0.422</td>
<td>0.243</td>
<td>0.274</td>
</tr>
<tr>
<td>17.</td>
<td>ZnO</td>
<td>0.084</td>
<td>0.118</td>
<td>0.083</td>
<td>0.104</td>
<td>0.202</td>
<td>0.141</td>
<td>0.169</td>
<td>0.127</td>
<td>0.208</td>
</tr>
<tr>
<td>18.</td>
<td>Ga₂O₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19.</td>
<td>As₂O₃</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
</tr>
<tr>
<td>20.</td>
<td>Rb₂O</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
</tr>
<tr>
<td>21.</td>
<td>SrO</td>
<td>0.062</td>
<td>0.056</td>
<td>0.046</td>
<td>0.049</td>
<td>0.055</td>
<td>0.049</td>
<td>0.049</td>
<td>0.051</td>
<td>0.051</td>
</tr>
<tr>
<td>No.</td>
<td>Compuesto</td>
<td>Esc. # 1</td>
<td>Esc. # 2</td>
<td>Esc. # 3</td>
<td>Esc. # 4</td>
<td>Esc. # 5</td>
<td>Esc. # 5 II</td>
<td>Esc. # 6</td>
<td>Esc. # 7</td>
<td>Esc. # 8</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>22.</td>
<td>Y$_2$O$_3$</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
</tr>
<tr>
<td>23.</td>
<td>ZrO$_2$</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24.</td>
<td>MoO$_3$</td>
<td><<</td>
<td>0.015</td>
<td><<</td>
<td>0.014</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td><<</td>
<td><<</td>
</tr>
<tr>
<td>25.</td>
<td>Rh</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
</tr>
<tr>
<td>26.</td>
<td>Ag$_2$O</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27.</td>
<td>CdO</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28.</td>
<td>SnO$_2$</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
</tr>
<tr>
<td>29.</td>
<td>PdO</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30.</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31.</td>
<td>BaO</td>
<td>0.394</td>
<td>0.39</td>
<td>0.301</td>
<td>0.301</td>
<td>0.353</td>
<td>0.356</td>
<td>0.304</td>
<td>0.333</td>
<td>0.331</td>
</tr>
<tr>
<td>32.</td>
<td>WO$_3$</td>
<td><<</td>
<td><<</td>
<td>-</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>33.</td>
<td>IrO$_2$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>34.</td>
<td>PbO</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
</tr>
<tr>
<td>35.</td>
<td>Pa</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
</tr>
</tbody>
</table>

"<<": significa que el elemento fue detectado pero no pudo ser cuantificado.

"-": significa que no se detectó el elemento
Anexo # 4

Caracterización química de las aleaciones.

<table>
<thead>
<tr>
<th>No.</th>
<th>Elemento</th>
<th>Aln. # 1</th>
<th>Aln. # 2</th>
<th>Aln. # 3</th>
<th>Aln. # 4</th>
<th>Aln. # 5</th>
<th>Aln. # 6</th>
<th>Aln. # 7</th>
<th>Aln. # 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>C</td>
<td>0.068</td>
<td>0.61</td>
<td>0.092</td>
<td>0.061</td>
<td>0.068</td>
<td>0.038</td>
<td>0.15</td>
<td>0.089</td>
</tr>
<tr>
<td>2.</td>
<td>Na</td>
<td>0.376</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>Mg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>P</td>
<td>0.127</td>
<td>0.103</td>
<td>0.132</td>
<td>0.102</td>
<td>0.114</td>
<td>0.117</td>
<td>0.109</td>
<td>0.119</td>
</tr>
<tr>
<td>7.</td>
<td>S</td>
<td>0.014</td>
<td>0.015</td>
<td>0.017</td>
<td>0.024</td>
<td>0.017</td>
<td>0.021</td>
<td>0.01</td>
<td>0.011</td>
</tr>
<tr>
<td>8.</td>
<td>Cl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.</td>
<td>K</td>
<td><<</td>
<td>-</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td>-</td>
</tr>
<tr>
<td>10.</td>
<td>Ca</td>
<td>0.092</td>
<td>0.043</td>
<td>0.139</td>
<td>0.046</td>
<td><<</td>
<td><<</td>
<td>0.047</td>
<td>0.092</td>
</tr>
<tr>
<td>11.</td>
<td>Ti</td>
<td>0.052</td>
<td>0.087</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td>0.075</td>
<td><<</td>
</tr>
<tr>
<td>12.</td>
<td>V</td>
<td>0.035</td>
<td><<</td>
<td>0.036</td>
<td><<</td>
<td>0.034</td>
<td>0.034</td>
<td>-</td>
<td><<</td>
</tr>
<tr>
<td>13.</td>
<td>Cr</td>
<td>0.078</td>
<td>0.088</td>
<td>0.145</td>
<td>0.1</td>
<td>0.095</td>
<td>0.361</td>
<td>0.072</td>
<td>0.063</td>
</tr>
<tr>
<td>14.</td>
<td>Mn</td>
<td>62.02</td>
<td>53.919</td>
<td>51.993</td>
<td>56.601</td>
<td>67.212</td>
<td>66.609</td>
<td>60.154</td>
<td>52.582</td>
</tr>
<tr>
<td>16.</td>
<td>Ni</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td>0.121</td>
<td><<</td>
</tr>
<tr>
<td>17.</td>
<td>Cu</td>
<td>1.886</td>
<td>1.998</td>
<td>-</td>
<td>1.654</td>
<td>1.426</td>
<td>1.56</td>
<td>1.678</td>
<td>1.75</td>
</tr>
<tr>
<td>18.</td>
<td>Zn</td>
<td>0.239</td>
<td>0.212</td>
<td>0.181</td>
<td>0.202</td>
<td>0.267</td>
<td>0.257</td>
<td>0.237</td>
<td>0.236</td>
</tr>
<tr>
<td>19.</td>
<td>Ga</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td><<</td>
</tr>
<tr>
<td>20.</td>
<td>As</td>
<td>0.059</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td>0.05</td>
<td>0.055</td>
<td>-</td>
<td><<</td>
</tr>
<tr>
<td>21.</td>
<td>Rb</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><<</td>
</tr>
<tr>
<td>22.</td>
<td>Zr</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23.</td>
<td>Sr</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24.</td>
<td>Mo</td>
<td>0.021</td>
<td>0.02</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
</tr>
</tbody>
</table>

La composición expresada como porcentaje en masa.
<table>
<thead>
<tr>
<th>No.</th>
<th>Elemento</th>
<th>Aln. # 1</th>
<th>Aln. # 2</th>
<th>Aln. # 3</th>
<th>Aln. # 4</th>
<th>Aln. # 5</th>
<th>Aln. # 5 II</th>
<th>Aln. # 6</th>
<th>Aln. # 7</th>
<th>Aln. # 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.</td>
<td>Rh</td>
<td><<</td>
<td>-</td>
<td><<</td>
<td><<</td>
<td>-</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
</tr>
<tr>
<td>26.</td>
<td>Sn</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td><<</td>
</tr>
<tr>
<td>27.</td>
<td>Sb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><<</td>
</tr>
<tr>
<td>28.</td>
<td>Ba</td>
<td>-</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td><<</td>
</tr>
<tr>
<td>29.</td>
<td>La</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30.</td>
<td>Ce</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31.</td>
<td>W</td>
<td>-</td>
<td><<</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td><<</td>
<td>-</td>
</tr>
<tr>
<td>32.</td>
<td>I</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>33.</td>
<td>Ir</td>
<td>-</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>34.</td>
<td>Pb</td>
<td>-</td>
<td>0.097</td>
<td>0.09</td>
<td><<</td>
<td>-</td>
<td>-</td>
<td>0.105</td>
<td><<</td>
<td>0.097</td>
</tr>
<tr>
<td>35.</td>
<td>Pa</td>
<td><<</td>
<td><<</td>
<td><<</td>
<td>-</td>
<td><<</td>
<td>-</td>
<td><<</td>
<td><<</td>
<td><<</td>
</tr>
</tbody>
</table>

Total: 99.40 98.20 96.70 98.20 99.20 99.70 97.70 98.20 99.10

“<<”: significa que el elemento fue detectado pero no pudo ser cuantificado.

“-”: significa que no se detectó el elemento.
Anexo # 5

Superficies de respuesta estimadas de la ecuación del diseño experimental.

Superficie de respuesta estimada
cascarilla = 0.0

Superficie de respuesta estimada
caliza = 0.0

Superficie de respuesta estimada
aluminio = 0.0
Anexo # 6

Influencia de los factores en el contenido de manganeso en la aleación.

Medias e intervalos de confianza (95% de confiabilidad)

![Diagrama de Aluminio](image1)

![Diagrama de Cascarilla](image2)
Medias e intervalos de confianza (95% de confiabilidad)

Caliza

% de Mn

54 55 56 57 58 59 60

-1 1

Caliza
Balance de masas teórico. Comparación con los resultados experimentales.

Experimento # 1

<table>
<thead>
<tr>
<th>Comp.</th>
<th>Cálculo teórico</th>
<th>Práctico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entrada</td>
<td>Generación</td>
</tr>
<tr>
<td>SiO₂</td>
<td>55.65</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO₂</td>
<td>484.22</td>
<td>0.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.50</td>
<td>410.16</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>7.46</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>12.60</td>
<td>27.60</td>
</tr>
<tr>
<td>MgO</td>
<td>2.37</td>
<td>0.00</td>
</tr>
<tr>
<td>P</td>
<td>0.69</td>
<td>0.00</td>
</tr>
<tr>
<td>H₂O</td>
<td>55.96</td>
<td>0.00</td>
</tr>
<tr>
<td>Si</td>
<td>9.60</td>
<td>26.01</td>
</tr>
<tr>
<td>Cu</td>
<td>8.40</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.84</td>
<td>306.00</td>
</tr>
<tr>
<td>Zn</td>
<td>1.44</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe</td>
<td>1.44</td>
<td>61.23</td>
</tr>
<tr>
<td>Mg</td>
<td>1.20</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>217.08</td>
<td>0.00</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>49.26</td>
<td>0.00</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.00</td>
<td>21.66</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>77.29</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CuO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>O₂</td>
<td>0.00</td>
<td>38.30</td>
</tr>
<tr>
<td>Total</td>
<td>1000.0</td>
<td>1000.0</td>
</tr>
<tr>
<td>Comp.</td>
<td>Entrada</td>
<td>Generación</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>SiO₂</td>
<td>52.21</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO₂</td>
<td>453.47</td>
<td>0.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.57</td>
<td>463.53</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6.99</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>11.80</td>
<td>27.60</td>
</tr>
<tr>
<td>MgO</td>
<td>2.23</td>
<td>0.00</td>
</tr>
<tr>
<td>P</td>
<td>0.65</td>
<td>0.00</td>
</tr>
<tr>
<td>H₂O</td>
<td>52.40</td>
<td>0.00</td>
</tr>
<tr>
<td>Si</td>
<td>11.20</td>
<td>24.31</td>
</tr>
<tr>
<td>Cu</td>
<td>9.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.98</td>
<td>286.56</td>
</tr>
<tr>
<td>Zn</td>
<td>1.68</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe</td>
<td>1.68</td>
<td>60.89</td>
</tr>
<tr>
<td>Mg</td>
<td>1.40</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>253.26</td>
<td>0.00</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>49.28</td>
<td>0.00</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.00</td>
<td>21.58</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>77.40</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CuO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>O₂</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>1000.0</td>
<td>1000.0</td>
</tr>
<tr>
<td>Comp.</td>
<td>Entrada</td>
<td>Generación</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>SiO₂</td>
<td>53.03</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO₂</td>
<td>453.47</td>
<td>0.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.39</td>
<td>393.57</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6.99</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>11.80</td>
<td>27.60</td>
</tr>
<tr>
<td>MgO</td>
<td>2.23</td>
<td>0.00</td>
</tr>
<tr>
<td>P</td>
<td>0.65</td>
<td>0.00</td>
</tr>
<tr>
<td>H₂O</td>
<td>52.40</td>
<td>0.00</td>
</tr>
<tr>
<td>Si</td>
<td>9.20</td>
<td>24.79</td>
</tr>
<tr>
<td>Cu</td>
<td>8.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.81</td>
<td>286.56</td>
</tr>
<tr>
<td>Zn</td>
<td>1.38</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe</td>
<td>1.38</td>
<td>98.33</td>
</tr>
<tr>
<td>Mg</td>
<td>1.15</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>208.03</td>
<td>0.00</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>49.28</td>
<td>0.00</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.00</td>
<td>21.68</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>125.76</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CuO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>O₂</td>
<td>0.00</td>
<td>44.03</td>
</tr>
<tr>
<td>Total</td>
<td>1000.0</td>
<td>1000.0</td>
</tr>
<tr>
<td>Comp</td>
<td>Entrada</td>
<td>Generación</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>SiO₂</td>
<td>50.82</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO₂</td>
<td>435.49</td>
<td>0.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.71</td>
<td>470.13</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6.70</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>11.33</td>
<td>21.79</td>
</tr>
<tr>
<td>MgO</td>
<td>2.08</td>
<td>0.00</td>
</tr>
<tr>
<td>P</td>
<td>0.63</td>
<td>0.00</td>
</tr>
<tr>
<td>H₂O</td>
<td>50.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Si</td>
<td>10.74</td>
<td>23.76</td>
</tr>
<tr>
<td>Cu</td>
<td>9.39</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.94</td>
<td>275.20</td>
</tr>
<tr>
<td>Zn</td>
<td>1.61</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe</td>
<td>1.61</td>
<td>88.69</td>
</tr>
<tr>
<td>Mg</td>
<td>1.23</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>248.77</td>
<td>0.00</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>38.89</td>
<td>0.00</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.00</td>
<td>17.10</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>116.08</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CuO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>1000.0</td>
<td>1000.0</td>
</tr>
<tr>
<td>Comp.</td>
<td>Entrada</td>
<td>Generación</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>SiO₂</td>
<td>51.46</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO₂</td>
<td>445.79</td>
<td>0.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.39</td>
<td>376.98</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>7.01</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>11.60</td>
<td>71.76</td>
</tr>
<tr>
<td>MgO</td>
<td>2.74</td>
<td>0.00</td>
</tr>
<tr>
<td>P</td>
<td>0.64</td>
<td>0.00</td>
</tr>
<tr>
<td>H₂O</td>
<td>51.49</td>
<td>0.00</td>
</tr>
<tr>
<td>Si</td>
<td>8.80</td>
<td>24.05</td>
</tr>
<tr>
<td>Cu</td>
<td>7.70</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.77</td>
<td>281.71</td>
</tr>
<tr>
<td>Zn</td>
<td>1.32</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe</td>
<td>1.32</td>
<td>53.90</td>
</tr>
<tr>
<td>Mg</td>
<td>1.10</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>198.99</td>
<td>0.00</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>128.16</td>
<td>0.00</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.00</td>
<td>56.40</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>67.72</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CuO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>O₂</td>
<td>0.00</td>
<td>34.30</td>
</tr>
<tr>
<td>Total</td>
<td>1000.0</td>
<td>1000.0</td>
</tr>
<tr>
<td>Comp.</td>
<td>Entrada</td>
<td>Generación</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>SiO₂</td>
<td>48.02</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO₂</td>
<td>415.04</td>
<td>0.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.56</td>
<td>422.76</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6.54</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>10.80</td>
<td>71.66</td>
</tr>
<tr>
<td>MgO</td>
<td>2.61</td>
<td>0.00</td>
</tr>
<tr>
<td>P</td>
<td>0.59</td>
<td>0.00</td>
</tr>
<tr>
<td>H₂O</td>
<td>47.96</td>
<td>0.00</td>
</tr>
<tr>
<td>Si</td>
<td>10.40</td>
<td>22.45</td>
</tr>
<tr>
<td>Cu</td>
<td>9.10</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.91</td>
<td>262.28</td>
</tr>
<tr>
<td>Zn</td>
<td>1.56</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe</td>
<td>1.56</td>
<td>53.57</td>
</tr>
<tr>
<td>Mg</td>
<td>1.30</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>235.17</td>
<td>0.00</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>128.16</td>
<td>0.00</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.00</td>
<td>56.30</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>67.72</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CuO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>O₂</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>1000.0</td>
<td></td>
</tr>
</tbody>
</table>
Experimento # 7

<table>
<thead>
<tr>
<th>Comp.</th>
<th>Entrada</th>
<th>Generación</th>
<th>Consumo</th>
<th>Salida</th>
<th>Salida (aleación)</th>
<th>Salida (escoria)</th>
<th>Salida Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>48.84</td>
<td>0.00</td>
<td>48.84</td>
<td>0.00</td>
<td>0.00</td>
<td>42.82</td>
<td>42.82</td>
</tr>
<tr>
<td>MnO₂</td>
<td>415.04</td>
<td>0.00</td>
<td>415.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.38</td>
<td>358.92</td>
<td>0.00</td>
<td>372.30</td>
<td>0.00</td>
<td>304.09</td>
<td>304.09</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6.52</td>
<td>0.00</td>
<td>6.52</td>
<td>0.00</td>
<td>0.00</td>
<td>30.52</td>
<td>30.52</td>
</tr>
<tr>
<td>CaO</td>
<td>10.80</td>
<td>71.76</td>
<td>0.00</td>
<td>82.56</td>
<td>0.00</td>
<td>49.99</td>
<td>49.99</td>
</tr>
<tr>
<td>MgO</td>
<td>2.61</td>
<td>0.00</td>
<td>0.00</td>
<td>2.61</td>
<td>0.00</td>
<td>4.38</td>
<td>4.38</td>
</tr>
<tr>
<td>P</td>
<td>0.59</td>
<td>0.00</td>
<td>0.00</td>
<td>0.59</td>
<td>0.29</td>
<td>0.00</td>
<td>0.29</td>
</tr>
<tr>
<td>H₂O</td>
<td>47.96</td>
<td>0.00</td>
<td>0.00</td>
<td>47.96</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Si</td>
<td>8.40</td>
<td>22.83</td>
<td>0.00</td>
<td>31.23</td>
<td>13.88</td>
<td>0.00</td>
<td>13.88</td>
</tr>
<tr>
<td>Cu</td>
<td>7.35</td>
<td>0.00</td>
<td>0.00</td>
<td>7.35</td>
<td>4.27</td>
<td>0.00</td>
<td>4.27</td>
</tr>
<tr>
<td>Mn</td>
<td>0.74</td>
<td>262.27</td>
<td>0.00</td>
<td>263.01</td>
<td>128.30</td>
<td>0.00</td>
<td>128.30</td>
</tr>
<tr>
<td>Zn</td>
<td>1.26</td>
<td>0.00</td>
<td>0.00</td>
<td>1.26</td>
<td>0.58</td>
<td>0.00</td>
<td>0.58</td>
</tr>
<tr>
<td>Fe</td>
<td>1.26</td>
<td>88.56</td>
<td>0.00</td>
<td>89.82</td>
<td>77.81</td>
<td>0.00</td>
<td>77.81</td>
</tr>
<tr>
<td>Mg</td>
<td>1.04</td>
<td>0.00</td>
<td>0.00</td>
<td>1.04</td>
<td><</td>
<td>0.00</td>
<td><</td>
</tr>
<tr>
<td>Al</td>
<td>319.95</td>
<td>0.00</td>
<td>319.95</td>
<td>0.00</td>
<td>13.86</td>
<td>0.00</td>
<td>13.86</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>128.18</td>
<td>0.00</td>
<td>128.18</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.00</td>
<td>56.42</td>
<td>0.00</td>
<td>56.42</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>116.08</td>
<td>0.00</td>
<td>116.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.22</td>
<td>0.00</td>
<td>0.22</td>
<td><</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>144.79</td>
<td>144.79</td>
<td>144.79</td>
</tr>
<tr>
<td>CuO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.43</td>
<td>1.43</td>
<td>1.43</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>O₂</td>
<td>0.00</td>
<td>43.80</td>
<td>0.00</td>
<td>43.80</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>1000.0</td>
<td>1000.0</td>
<td></td>
<td>818.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp.</td>
<td>Entrada</td>
<td>Generación</td>
<td>Consumo</td>
<td>Salida</td>
<td>Salida (aleación)</td>
<td>Salida (escoria)</td>
<td>Salida Total</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>SiO₂</td>
<td>46.80</td>
<td>0.00</td>
<td>46.80</td>
<td>0.00</td>
<td>0.00</td>
<td>29.64</td>
<td>29.64</td>
</tr>
<tr>
<td>MnO₂</td>
<td>398.63</td>
<td>0.00</td>
<td>398.63</td>
<td>0.00</td>
<td>0.00</td>
<td>331.19</td>
<td>331.19</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.75</td>
<td>430.94</td>
<td>0.00</td>
<td>443.69</td>
<td>0.00</td>
<td>30.70</td>
<td>30.70</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6.26</td>
<td>0.00</td>
<td>6.26</td>
<td>0.00</td>
<td>0.00</td>
<td>30.70</td>
<td>30.70</td>
</tr>
<tr>
<td>CaO</td>
<td>10.37</td>
<td>66.24</td>
<td>0.00</td>
<td>76.61</td>
<td>0.00</td>
<td>48.77</td>
<td>48.77</td>
</tr>
<tr>
<td>MgO</td>
<td>2.47</td>
<td>0.00</td>
<td>0.00</td>
<td>2.47</td>
<td>0.00</td>
<td>4.43</td>
<td>4.43</td>
</tr>
<tr>
<td>P</td>
<td>0.57</td>
<td>0.00</td>
<td>0.00</td>
<td>0.57</td>
<td>0.24</td>
<td>0.00</td>
<td>0.24</td>
</tr>
<tr>
<td>H₂O</td>
<td>46.07</td>
<td>0.00</td>
<td>0.00</td>
<td>46.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Si</td>
<td>9.97</td>
<td>21.88</td>
<td>0.00</td>
<td>31.85</td>
<td>17.71</td>
<td>0.00</td>
<td>17.71</td>
</tr>
<tr>
<td>Cu</td>
<td>8.73</td>
<td>0.00</td>
<td>0.00</td>
<td>8.73</td>
<td>4.96</td>
<td>0.00</td>
<td>4.96</td>
</tr>
<tr>
<td>Mn</td>
<td>0.88</td>
<td>251.91</td>
<td>0.00</td>
<td>252.79</td>
<td>139.39</td>
<td>0.00</td>
<td>139.39</td>
</tr>
<tr>
<td>Zn</td>
<td>1.50</td>
<td>0.00</td>
<td>0.00</td>
<td>1.50</td>
<td>0.84</td>
<td>0.00</td>
<td>0.84</td>
</tr>
<tr>
<td>Fe</td>
<td>1.50</td>
<td>81.26</td>
<td>0.00</td>
<td>82.76</td>
<td>66.58</td>
<td>0.00</td>
<td>66.58</td>
</tr>
<tr>
<td>Mg</td>
<td>1.25</td>
<td>0.00</td>
<td>0.00</td>
<td>1.25</td>
<td><</td>
<td>0.00</td>
<td><</td>
</tr>
<tr>
<td>Al</td>
<td>228.08</td>
<td>0.00</td>
<td>0.00</td>
<td>228.08</td>
<td>35.32</td>
<td>0.00</td>
<td>35.32</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>117.98</td>
<td>0.00</td>
<td>117.98</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.00</td>
<td>51.74</td>
<td>0.00</td>
<td>51.74</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>106.14</td>
<td>0.00</td>
<td>106.14</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.13</td>
<td>0.00</td>
<td>1.13</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>124.63</td>
<td>124.63</td>
</tr>
<tr>
<td>CuO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.60</td>
<td>1.60</td>
<td>1.60</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.21</td>
<td>1.21</td>
</tr>
<tr>
<td>O₂</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>1000.0</td>
<td>1000.0</td>
<td>837.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo # 8

Ejemplo de uno de los espectros de fluorescencia de rayos X
(Experimento # 5). Elementos del V al Cu
Anexo # 9
Peligrosidad de los reactivos.

Aluminio.

El aluminio es una sustancia potencialmente peligrosa cuando se encuentra en forma de polvo muy fino, por el riesgo de explosión por contacto con el aire o fuentes de calor, así como diversos agentes oxidantes. Es irritante y puede afectar significativamente los pulmones en caso de inhalación sistemática. Las peligrosidades de los compuestos de aluminio son muy variadas y, si bien algunas dependen en lo fundamental del aluminio, en la mayoría dependen de los otros elementos que constituyen la sustancia en cuestión.

Manganeso.

Los compuestos de manganeso tienen, en general, acción tóxica por inhalación e ingestión. Por inhalación de vapores o polvo de estos compuestos por períodos de tiempo relativamente pequeños se afecta el sistema nervioso central, pudiéndose producir afectaciones en el habla, en coordinación de las ideas y dificultades en la locomoción debidas a movimientos arrítmicos de las extremidades. En algunos casos se producen síntomas que recuerdan el denominado mal del Parkinson.

También se han reportado alteraciones hematológicas con incremento en la formación de eritrocitos y de la fragilidad osmótica de los glóbulos rojos.

Además de los peligros anteriores hay que destacar que la reacción del Al con el MnO\textsubscript{2} es por naturaleza explosiva debido a la gran cantidad de calor que se desprende. Regulándose las proporciones de ambos componentes se puede efectuar la reacción de un modo completamente seguro.

En la realización de la síntesis debe tenerse extremadas precauciones pues la reacción puede verificarse violentamente y parte de la mezcla en el interior del crisol puede proyectarse hacia fuera y ocasionar quemaduras. Además el electrodo utilizado en la iniciación de la reacción está conectado a una fuente de electricidad de 220 v.
Por lo anterior debe tomarse como medida de seguridad la utilización de

- Yelmo.
- Guantes para soldar.
- Delantales para soldar.
- Polainas para soldar.