

JNIVERSIDAD CENTRAL "MARTA ABREU" DE LAS VILLAS

VERITATE SOLA NOVIS IMPONETUR VIRILIS TOGA 7 948

Facultad de Ingeniería Eléctrica Departamento de Electroenergética

Trabajo de Diploma

Título: "Balance de Carga en Circuitos de Distribución Primaria por Algoritmo Genético"

Autor: Roberto Peñate Herrera

Tutor: Dr.C. Ignacio Pérez Abril

Universidad Central "Marta Abreu" de Las Villas Facultad de Ingeniería Eléctrica Departamento de Electroenergética

TRABAJO DE DIPLOMA

Balance de Carga en Circuitos de Distribución Primaria por Algoritmo Genético

Autor: Roberto Peñate Herrera

Tutor: Dr. Ignacio Pérez Abril

Santa Clara

2007

"Año 49 de la Revolución"

Hago constar que el presente trabajo de diploma fue realizado en la Universidad Central Marta Abreu de Las Villas como parte de la culminación de estudios de la especialidad de Ingeniería Eléctrica, autorizando a que el mismo sea utilizado por la Institución, para los fines que estime conveniente, tanto de forma parcial como total y que además no podrá ser presentado en eventos, ni publicados sin autorización de la Universidad.

Firma del Autor

Los abajo firmantes certificamos que el presente trabajo ha sido realizado según acuerdo de la dirección de nuestro centro y el mismo cumple con los requisitos que debe tener un trabajo de esta envergadura referido a la temática señalada.

Firma del Autor

Firma del Jefe de Departamento donde se defiende el trabajo

Firma del Responsable de Información Científico-Técnica

PENSAMIENTO

"No hay nada nuevo bajo el sol, pero cuántas cosas viejas hay que no conocemos".

(Ambrose Bierce, 1842-1914)

DEDICATORIA

A mis padres, por su entrega y sacrificio.

A mis hermanas Maidy y Tania, por su ejemplo.

AGRADECIMIENTOS

A todos los que de una manera u otra me han prestado su apoyo o ayuda, en especial a:

A Jesús y a todos los amigos que me han dado confianza y me han alentado a seguir adelante. A mis padres, y a mi familia que han creído en mí. A mis profesores y a mi tutor por el apoyo y ayuda prestados durante estos años. A mi país, por las oportunidades que me ha brindado.

TAREA TÉCNICA:

Para alcanzar el objetivo de este trabajo resulta imprescindible realizar las siguientes tareas técnicas:

1. Analizar el desbalance en los sistemas eléctricos de distribución.

2. Reflejar los efectos negativos del desbalance y su afectación a la Calidad de la Energía.

3. Profundizar en el algoritmo genético utilizado y simplificar el planteamiento del problema de optimización.

4. Probar el método de optimización en un circuito real con el objetivo de minimizar las pérdidas y el desbalance.

RESUMEN

Aún cuando la operación más eficiente de un circuito trifásico se obtiene cuando la carga está totalmente balanceada entre las fases, desde el punto de vista operativo, es prácticamente imposible mantener dicho balance las 24 horas del día y en todos los nodos del circuito de distribución. La existencia de desbalance entre las corrientes de fase provoca un incremento de las pérdidas de potencia y energía en toda la longitud del circuito primario, al mismo tiempo que empobrece la calidad de la energía servida al contribuir al desbalance de los voltajes en los distintos nodos del circuito. El presente trabajo utiliza un Algoritmo Genético Simple SGA implementado para seleccionar óptimamente las fases del circuito primario a que se deben conectar tanto los distintos transformadores y bancos de transformadores de distribución, como los ramales bifásicos y monofásicos del circuito, de forma que se minimicen los costos de las pérdidas de energía en toda la longitud del mismo.

TABLA DE CONTENIDOS

INTRODUCCIÓN	1
Capítulo 1: Balance de Cargas	2
1.1El problema de la Calidad de la Energía	2
1.2 Características de los circuitos de distribución primaria en Cuba	3
1.3 Implicaciones del desbalance	5
1.3.1 Medición del desbalance en los sistemas eléctricos	6
1.3.2Efecto del desbalance en los motores	9
1.3.3Efecto del desbalance en líneas, transformadores y otros	10
Capítulo 2: Método de Solución	11
2.1 Variantes de conexión de los ramales bifásicos y monofásicos	11
2.1.1 Ramales bifásicos	11
2.1.2 Ramales monofásicos	11
2.2 Variantes de conexión de los bancos de transformadores	12
2.2.1 Bancos de tres transformadores	12
2.2.2 Bancos de dos transformadores	14
2.2.3 Transformadores monofásicos	15
2.3 Variables Independientes	17
2.4 Función Objetivo	17
Capítulo 3: Algoritmo Genético	19
3.1 Introducción al Algoritmo Genético Simple (SGA)	19
3.2 Balance de un circuito de ejemplo	21
3.3 Balance de un circuito real	23
Conclusiones y Recomendaciones	25
Bibliografía	26
Anexos	27
Anexo I: Monolineal del circuito # 19 de Santa Clara	27
Anexo II: Tablas de datos	
Anexo III: Corrientes por las ramas	
Anexo IV: Resultados de la corrida del algoritmo	37

INTRODUCCIÓN

Aún cuando la operación más eficiente de un circuito trifásico se obtiene cuando la carga está totalmente balanceada entre las fases, desde el punto de vista operativo, es prácticamente imposible mantener dicho balance las 24 horas del día y en todos los nodos del circuito de distribución.

Sin embargo, el uso de transformadores monofásicos, si bien tiene ciertas ventajas desde el punto de vista de la explotación de las redes en cuanto a inversiones y flexibilidad al poder conformar bancos de diferentes características, contribuye de forma importante a acentuar el fenómeno del desbalance de carga entre las fases del circuito.

Por otra parte, la práctica de explotación de estos circuitos y el continuo incremento de la carga, provocan la adición de nuevos bancos de transformadores o la modificación de los ya existentes, lo que corrientemente se hace sin atender a consideraciones de balance en el circuito.

De hecho, se considera que estos circuitos son los que exhiben mayor desbalance entre todos los tipos de circuitos del Sistema Electroenergético Nacional (SEN).

La existencia de desbalance entre las corrientes de fase provoca un incremento de las pérdidas de potencia y energía en toda la longitud del circuito primario, al mismo tiempo que empobrece la calidad de la energía servida al contribuir al desbalance de los voltajes en los distintos nodos del circuito primario.

De esta manera, el objetivo del presente trabajo es seleccionar óptimamente las fases del circuito primario a que se deben conectar tanto los distintos transformadores y bancos de transformadores de distribución, como los ramales bifásicos y monofásicos del circuito, de forma que se minimicen los costos de las pérdidas de energía en toda la longitud del circuito.

Capítulo 1: Balance de cargas.

1.1. El problema de la Calidad de la Energía.

El objetivo fundamental de un sistema de suministro eléctrico es el de distribuir la energía a los receptores eléctricos con la máxima continuidad del servicio y cumpliendo los parámetros de calidad establecidos en las normativas existentes. Se considera como problema de calidad de la energía cualquier tipo de alteración de los parámetros de la tensión, la corriente o la frecuencia que provoque fallos o mala operación del equipamiento. Las normas de Calidad de la Energía se dedican a asegurar la Calidad de la Tensión de Suministro.

En el mundo la electricidad se trata como una mercancía en un mercado con características peculiares. La definición de parámetros de calidad permiten determinar las características de competitividad del producto de determinado suministrador. La sociedad y la industria actual poseen una penetración de altísimo grado en cuanto a equipamiento electrónico de diversas generaciones, vinculados al control de procesos, accionamiento, procesamiento de datos, comunicaciones y transmisión de información, dispositivos domésticos, comerciales y de entretenimiento entre otros. Es por eso que hay razones por la cual es importante hablar de Calidad de la Energía: una insuficiente calidad en el suministro de la energía eléctrica afecta, en mayor o menor grado, a otras tecnologías y procesos industriales, donde las pérdidas económicas que se generan por este concepto pueden llegar a ser importantes, además de provocar una operación ineficiente e impropia, entre otros, en las redes eléctricas, que conducen a averías o incremento en los costos de operación, los que, al final, redundan en pérdidas para las compañías del servicio eléctrico.

Algunos de los fenómenos fundamentales que afectan la calidad de la tensión son, entre otros, desviaciones y fluctuaciones de tensión, distorsión de la forma de onda y desbalance de tensiones. En el presente trabajo se trata sobre este último: el desbalance de las tensiones.

Un sistema se considera asimétrico o desbalanceado si la fuente trifásica suministra tensiones en las respectivas fases que no tienen igual valor efectivo y/o el ángulo entre estas es distinto de 120°. A este efecto se le denomina asimetría de tensiones .También el sistema puede considerarse desbalanceado si las corrientes por fase no cumplen la misma condición anterior, lo que es debido a la presencia de receptores trifásicos asimétricos o receptores monofásicos mal distribuidos en el sistema trifásico. El desbalance o asimetría de tensión se define comúnmente como la máxima desviación de una fase respecto a la tensión promedio dividida por dicha tensión promedio (NEMA). Una definición alternativa es como la relación de la tensión de secuencia negativa V_2/V_1 o cero V_0/V_1 con respecto a la tensión de secuencia positiva.

Esta perturbación es motivada principalmente por la asimetría de la carga y las asimetrías en el sistema eléctrico de transmisión y distribución y generalmente se encuentra en el rango de 0.5 a 2%. La principal fuente de desbalance menor que el 2% es el suministro de cargas monofásicas desde sistemas trifásicos. Otra fuente de desbalance es la apertura de fusibles en una fase de un banco de capacitores trifásico.

1.2. Características de los circuitos de distribución primaria en Cuba.

El sistema de distribución, está conformado por las instalaciones y equipos del sistema de potencia, que transportan la energía eléctrica de los puntos de entrega del sistema a los usuarios finales. Está constituido por las subestaciones de distribución, de las cuales salen los circuitos primarios de distribución. Los circuitos primarios constituyen el segundo nivel de jerarquía del sistema de distribución luego de las subestaciones de distribución. Son la "espina dorsal" del sistema de distribución pues son los componentes que realmente distribuyen la energía eléctrica en una zona geográfica dada. Por lo general, los circuitos primarios tienen topología radial a cuatro hilos (tres fases y neutro), operan a media tensión y constan de un tramo principal con muchas ramificaciones que pueden ser bifásicas (dos fases y neutro) o monofásicas (una fase y neutro).

En Cuba, la distribución primaria se realiza mediante circuitos radiales trifásicos a voltajes de 13.8 kV o 4.16 kV en los circuitos más antiguos. Estos circuitos parten de los transformadores de potencia Δ -Yg de las subestaciones, con su configuración trifásica en la medida de las necesidades pueden poseer ramales bifásicos o monofásicos.

A pesar de que los sistemas eléctricos trifásicos se diseñan sobre bases balanceadas, existen asimetrías intrínsecas en la configuración de las componentes del sistema de potencia, tales como transposición incompleta de líneas, transformadores conectados en delta abierta o estrella incompleta, cargas monofásicas mal distribuidas, operación bajo falla de equipos de corrección del factor de potencia, impedancias asimétricas en las redes de alimentación, fallas monofásicas, desperfectos en empalmes, uniones o contactos y asimetrías de las propias fuentes de suministro.

En nuestro país el sector eléctrico ha sufrido restricciones de recursos financieros que no han permitido el adecuado desarrollo en la ampliación y el mantenimiento a la red de distribución eléctrica. Esto ha provocado altas pérdidas de energía (del orden del 16%), principalmente por causas técnicas en la red de distribución primaria.

En términos generales las pérdidas de distribución se producen por desbalances y sobrecargas en los circuitos dado el incremento del consumo y las características técnicas de la red. Por estas razones, una de las condiciones más generalizadas en los sistemas de suministro eléctrico lo constituye, en mayor o menor grado, el desbalance de tensión.

Empresa	Cap.	Vnom	Vprom	Vmáx	Vmin	% Tensión	% Desbal.	Frecuencia
Hotel Union	630	380 / 220	228.8	230	226	1.04	1.60	60.7/60
Faro Luna	3x50	120/240	121.7	123.1	119.6	1.01	3.08	60.1/59.6
Yaguacam	3x100	120/240	242.7	246	238	1.01	2.27	60.6/60.2
Cayo Loco	1000	480	461.6	471	453.7	0.96	3.5	59.9/59.2
Base Central	630	480	450.3	472	424	0.94	6.12	61/59.8
Benefactora	3x100	120/240	245.9	247.4	239.2	1.02	4.64	
Pienso	1000	480	430.4	437.7	419.5	0.90	3.63	
Frigorífico	1000	480	467.9	471	462.4	0.97	1.52	

Tabla 1.1 Muestras ilustrativas de desbalance de tensión en instalaciones de la Provincia de Cienfuegos.

Cap. : Capacidad en KVA nominales de los transformadores instalados.

Vnom, Vprom, Vmáx y Vmin: tensiones nominal, promedio, máxima y mínima de la instalación, en V.
% Tensión: desviación de tensión en % de la nominal.

% Desbal. : porcentaje de desbalance de tensión según definición NEMA.

Frecuencia: frecuencia máxima y mínima registrada, en Hz.

1.3. Implicaciones del desbalance.

Es bien conocido que el desbalance de tensión tiene un efecto perjudicial sobre la mayoria de las aplicaciones eléctricas, motivando que se dediquen esfuerzos a la investigación de este efecto en diversas áreas. Un aspecto que ha interesado a numerosos investigadores es el relacionado con las pérdidas que provoca en las redes eléctricas y sus métodos de cálculo y simulación en diferentes regímenes, incluyendo transitorios.

El balance perfecto de las cargas en las tres fases de un sistema trifásico es imposible de lograr en condiciones reales, donde coexisten cargas trifásicas y monofásicas conectadas al circuito industrial.

Por otra parte, los voltajes de suministro no son perfectamente simétricos, pues el sistema eléctrico nacional está afectado por la asimetría de las cargas y otros elementos que lo constituyen.

Fig.1.1. Tendencia al desbalance para un circuito de alimentación primaria.

1.3.1. Medición del desbalance en los sistemas eléctricos

Se han propuesto diferentes formas de cuantificar el desbalance, que responden a definiciones desarrolladas por distintas instituciones, y mucho se ha publicado sobre la mejor manera de expresarlo sin que se llegue a un consenso. Las definiciones fundamentales existentes son:

- Factor de desbalance de tensión de línea definido por la NEMA (National Electric Manufacturing Association):

$$FDVL = \frac{M\dot{a}x \left\{ V_{ab} - V_{avg} \right\}, \left| V_{bc} - V_{avg} \right|, \left| V_{ca} - V_{avg} \right|}{V_{avg}} \cdot 100\%$$

Donde:

Máx { $|V_{ab} V_{avg}|$, $|V_{bc} V_{avg}|$, $|V_{ca} V_{avg}|$ }, es el valor máximo de la diferencia entre las tensiones de línea (V) y el valor promedio de las tensiones de línea definido como:

$$V_{avg} = \frac{V_{ab} + V_{bc} + V_{ca}}{3} \tag{V}$$

- Factor de desbalance de tensión de fase según la IEEE Std. 141:

$$FDVF = \frac{M\dot{a}x \left\{ V_a - V_{avg} \right\}, \left| V_b - V_{avg} \right|, \left| V_c - V_{avg} \right| \right\}}{V_{avg}} \cdot 100\%$$

Donde:

Máx {|Va Vavg|,|Vb Vavg |,|Vc Vavg|}, es el valor máximo de la diferencia entre las tensiones de fase (V) y el valor promedio de las tensiones de fase definido como:

$$V_{avg} = \frac{V_a + V_b + V_c}{3}$$
(V)

 Factor de desbalance de tensión (o grado de desequilibrio) definido por la IEC como la relación porcentual entre la componente de secuencia negativa de la tensión (o corriente) con la componente de secuencia positiva. El factor de desbalance (FDV) o grado de desequilibrio de tensión (Gd) será:

Donde:

*V*₂ - Tensión de secuencia negativa

 V_{1} - Tensión de secuencia positiva

De forma análoga el desbalance de las cargas puede medirse a partir del grado de desbalance de corriente:

$$G = \frac{I_2}{I_1} \cdot 10\%$$

Donde:

 I_2 - Corriente de secuencia negativa

 I_{1} - Corriente de secuencia positiva

Estas expresiones permiten evaluar de manera certera los desbalances en los sistemas eléctricos industriales.

- Factor de desbalance de tensión complejo definido como el anterior, pero teniendo en cuenta no solo el valor modular de las componentes de tensión, sino también su ángulo de fase:

$$\bar{K}_{V} = \frac{\bar{V}_{2}}{\bar{V}_{1}} \cdot 100\% = k_{V} \cdot e^{j\theta_{V}}$$

Donde k_v es el módulo y _v el ángulo de fase en grados, del factor de desbalance complejo. De estos factores, el más utilizado en la práctica es el propuesto por la NEMA, ya que aunque no especifica qué tipo de desbalance tiene lugar, evita el uso el algebra compleja y el trabajo con componentes simétricas, empleando las mediciones del valor rms de las tensiones de línea directamente. La ANSI (American Nacional Standards Institute) recomienda un factor de desbalance inferior al 3% bajo condiciones no sinusoidales (ANSI C84.1-1995). Por su parte, el Comité Electrotécnico Internacional (IEC) recomienda, en sistemas eléctricos, un factor de desbalance de tensión menor del 2%.

Otros formas de hallar una medida del desbalance son los siguientes:

- A partir de la potencia instalada: Consiste en determinar un coeficiente de asimetría (*a*) en función con la potencia activa distribuida en el sistema trifásico:

$$a = \frac{Pnud}{Pud} \cdot 100$$

Donde:

Pnud - Potencia no uniformemente distribuida en la red trifásica, que se determina como la suma de la diferencia con respecto a la menor potencia activa de fase.

Pud - Potencia uniformemente distribuida en la red trifásica, que se determina como tres veces la menor potencia activa de fase.

Se considera que el sistema es simétrico si 🕫

Este método permite determinar el desbalance en cargas. Sin embargo está basado en la teoría de Budeano aplicada a los sistemas trifásicos. No reconoce la presencia de una potencia de asimetría. De allí su principal limitación. Por otra parte, no tiene en cuenta los desbalances de carga reactiva.

-A partir del porciento de desbalance (δU): Consiste en determinar el porciento de desbalance de la máxima desviación de tensión media, en relación con el promedio de las tensiones de línea en un intervalo de 10 min.

Donde:

Umed (máx) - Máxima desviación de tensión de línea con relación a la tensión promedio. *Umed* - Promedio de las tensiones de línea.

La expresión anterior es solo una aproximación del porciento de la componente de tensión de secuencia negativa). Para desbalances de tensión superiores al 5%, es necesario un estudio a partir del factor de desbalance.

1.3.2. Efecto del desbalance en los motores.

En la industria, el efecto del desbalance sobre los motores atrae particular atención por ser éstos los convertidores electromecánicos mayoritarios en cualquier instalación y una de las cargas más sensibles a este fenómeno.

La aparición de variaciones rápidas en la asimetría de las tensiones trifásicas, conllevan a la variación de los momentos de torque en los motores eléctricos, lo que es causa de aparición de esfuerzos adicionales en las cabezas de las bobinas de las máquinas, su vibración y tensiones de fatiga en elementos mecánicos constructivos del propio motor y el accionamiento, lo que trae como resultado una disminución de su tiempo de vida.

Cuando los motores trifásicos se alimentan con voltajes desbalanceados, aparece una componente de corriente de secuencia negativa circulando por el motor, que incrementa las pérdidas fundamentalmente en el rotor.

El incremento de la corriente del estator debido al desbalance es muy pequeño y normalmente no detectado por los dispositivos de protección, mientras que el motor se sobrecalienta y puede dañarse su aislamiento.

El siguiente gráfico muestra en cuanto se reduce la potencia útil que puede entregar el motor con respecto a la nominal debido al desbalance en el voltaje de la fuente. Un desbalance mayor que el 2% no debe ser admitido.

Source: NEMA MG 1-1993.

Fig.1.2. Potencia útil en relación a la potencia nominal bajo condiciones de desbalance.

1.3.3. Efecto del desbalance en líneas, transformadores y otros.

En las líneas y transformadores del sistema el desbalance ocasiona un incremento de las pérdidas de potencia activa, limitación de la capacidad de carga y sobreestimación de capacidades en el diseño. En los dispositivos y convertidores electrónicos de potencia el desbalance provoca armónicos triples que favorecen la distorsión armónica, incrementos de corrientes de consumo y mal funcionamiento y disminución de su vida útil La asimetría en la tensión también conlleva al calentamiento adicional del equipamiento de fuerza y disminuye su vida útil. Este defecto también influencia negativamente en el funcionamiento de algunos esquemas de protecciones por relés, provocando operaciones erráticas y sacando de funcionamiento equipos.

Capítulo 2: Método de solución.

Para desarrollar la formulación matemática del problema, se considera que el circuito primario tiene una configuración radial trifásica, aunque puede contener NR ramales bifásicos o monofásicos. En todo su recorrido, el circuito tiene N nodos en los que pueden estar conectados bancos de transformadores o transformadores monofásicos.

El modo de conexión de los ramales y de los bancos de transformadores o transformadores monofásicos al circuito, determina la forma en que se reflejan las corrientes de carga en las fases del circuito y por lo tanto tienen una implicación directa en el desbalance de carga.

2.1. Variantes de conexión de los ramales bifásicos y monofásicos.

2.1.1. Ramales Bifásicos.

Un ramal bifásico siempre tiene que conectarse a la sección trifásica del circuito. Si se denota como X_R la variable que representa la conexión de este ramal, las fases a que se conecta para las distintas variantes de conexión son:

Tabla 2.1.	Variantes de	e Conexión	de un	Ramal	Bifásico.
------------	--------------	------------	-------	-------	-----------

Fase	$X_R = 1$	$X_R = 2$	$X_R = 3$
F1	А	В	С
F2	В	С	А

2.1.2. Ramales Monofásicos.

Un ramal monofásico puede conectarse tanto de la sección trifásica como de un ramal bifásico. En el primer caso las variantes de conexión son tres:

Tabla 2.2. Variantes de Conexión de un Ramal Monofásico a Sección Trifásica.

Fase	$X_R = 1$	$X_R = 2$	$X_R = 3$
F1	А	В	С

Sin embargo, cuando el ramal se conecta a un ramal bifásico que lo precede, solo tiene dos variantes de conexión, pero de acuerdo a la propia conexión X_R^0 del ramal precedente, se generan las siguientes variantes:

Ramal	$X_R^0 = 1$		mal $X_R^0 = 1$ $X_R^0 = 2$		$X_{R}^{0} = 3$	
Fase	X _R	X _R	X _R	X _R	X _R	X _R
	=1	=2	=1	=2	=1	=2
F1	Α	В	В	С	С	А

Tabla 2.3. Variantes de Conexión de un Ramal Monofásico a Ramal Bifásico.

2.2. Variantes de conexión de los bancos de transformadores.

2.2.1. Bancos de Tres Transformadores.

Los bancos de tres transformadores tienen conexión Y- Δ y se emplean cuando la carga trifásica a servir es mayor que la monofásica. En esta conexión, el neutro de la estrella no se conecta para evitar que el banco sirva de paso a las corrientes de secuencia cero tanto de carga como en régimen de falla.

Estos bancos se constituyen por un Transformador de Alumbrado (TA) a que se conecta la carga monofásica de 240/120 V y dos Transformadores de Fuerza (TF) iguales que completan el banco para suministrar carga trifásica a 240 V.

Para simplificar el análisis, se va a considerar que la carga monofásica de 120 V está perfectamente distribuida entre las dos secciones del TA, de forma que puede considerarse una carga al V_{LL} de 240 V con corriente I_{1F} , mientras que la carga trifásica de 240 V tiene una corriente por fase I_{3F} .

$$I_{\mathcal{Y}} = (P_{\mathcal{Y}} - j \mathcal{Q}) V_{LL}$$
$$I_{\mathcal{Y}} = \frac{1}{3} (P_{\mathcal{Y}} - j \mathcal{Q}) V_{LL}$$
(1)

Fig. 2.1. Banco de tres transformadores con conexión Y-A.

Como puede inferirse de la Fig. 2.1, los voltajes de línea en el secundario están en fase a lo voltajes de fase del primario. Por lo cual las corrientes de carga i1, i2, i3 estarán desfasadas adicionalmente los ángulos $\phi(F_1)$, $\phi(F_2)$, $\phi(F_3)$ de los voltajes de fase en el primario. De esta forma:

$$i_{1} = (I_{1F} + I_{3F}) \exp p(F_{1}))$$

$$i_{2} = (I_{3F}) \exp p(F_{2}))$$

$$i_{3} = (I_{3F}) \exp p(F_{3}))$$
(2)

Considerando que el neutro está desconectado en el primario y aplicando el principio de superposición, pueden determinarse las corrientes en el primario como:

$$I_{1} = +\frac{2}{3}i_{1} - \frac{1}{3}i_{2} - \frac{1}{3}i_{3}$$

$$I_{2} = -\frac{1}{3}i_{1} + \frac{2}{3}i_{2} - \frac{1}{3}i_{3}$$

$$I_{3} = -\frac{1}{3}i_{1} - \frac{1}{3}i_{2} + \frac{2}{3}i_{3}$$
(3)

Como puede suponerse, este tipo de banco solamente puede conectarse a una sección trifásica del circuito, y como los dos transformadores de fuerza son iguales, las variantes de conexión al circuito primario, representadas por la variable X_B son tres, como podemos ver en la tabla 2.4.

Tabla 2.4.	Variantes de	Conexión (de un Banco	de Tres	Transformadores.
------------	--------------	------------	-------------	---------	------------------

Fase	X _B	X _B	X _B
rase	=1	=2	=3
F1	Α	В	С
F2	В	С	А
F3	С	А	В

2.2.2 Bancos de Dos Transformadores.

Los bancos de dos transformadores tienen conexión Yg-∆ abierta y se emplean para dar servicio trifásico y monofásico combinados donde la carga trifásica es menor que la monofásica.

Fig. 2.2. Banco de dos transformadores con conexión Y-∆ abierta.

Estos bancos pueden conectarse tanto en ramales trifásicos como bifásicos, ya que reciben alimentación de solo dos fases y neutro. Están constituidos por un TA a que se conecta la carga monofásica de 240/120 V y un TF que en conjunto pueden suministrar carga trifásica de 240 V.

Al igual que en el banco de tres transformadores, las corrientes de carga i_1 , i_2 , i_3 , se calculan por (2). Aplicando superposición, se obtienen las corrientes en el primario como:

$$I_{1} = i_{1} - i_{3}$$

$$I_{2} = i_{2} - i_{3}$$

$$I_{3} = 0$$
(4)

Cuando este banco se encuentra conectado en una sección trifásica del circuito, existen seis variantes posibles de conexión:

Tabla 2.5. Variantes de Conexión de un Banco de Dos transformadores en una Sección Trifásica.

Fase	X _B =1	$X_B = 2$	$X_B = 3$	$X_B = 4$	$X_B = 5$	$X_B = 6$
F1	А	В	В	С	С	А
F2	В	А	С	В	А	С
F3	С	С	А	А	В	В

En el caso que este banco se encuentra conectado a un ramal bifásico, las variantes de conexión se reducen a solo dos, pero como el ramal bifásico puede conectarse a la sección trifásica del circuito en tres posiciones diferentes de acuerdo al valor de la X_R del ramal, la tabla de conexiones quedaría:

Tabla 2.6. Variantes de Conexión de un Banco de Dos transformadores en un Ramal Bifásico

Ramal	$X_R = 1$		$X_R = 2$		$X_R = 3$	
Face	X _B =	X _B				
газе	1	=2	=1	=2	=1	=2
F1	Α	В	В	С	С	Α
F2	В	А	С	В	Α	С
F3	С	С	Α	А	В	В

2.2.3 Transformadores monofásicos.

Finalmente, los transformadores monofásicos se emplean para dar solo servicio monofásico a cargas de 240/120 V.

Fig. 2.3. Transformador monofásico.

En este caso, solo hay corriente en la fase F₁. Por lo tanto:

$$I_{1} = i_{1}
 I_{2} = 0
 I_{3} = 0$$
(5)

Estos transformadores pueden figurar en secciones trifásicas, bifásicas y monofásicas del circuito, por lo que las variantes de conexión dependen del número de fases de la sección.

Cuando el transformador se encuentra conectado en una sección trifásica del circuito, existen tres variantes posibles de conexión:

Tabla 2.7. Variantes de Conexión de un Transformador Monofásico en una Sección Trifásica.

Fase	$X_B =$	X _B =2	X _B =3
F1	A	<u> </u>	<u> </u>
F2	В	С	А
F3	С	А	В

Si el transformador se encuentra conectado a una sección bifásica del circuito, las variantes de conexión se reducen a solo dos, pero como el ramal bifásico puede conectarse a la sección trifásica del circuito en tres posiciones diferentes de acuerdo al valor de la X_R del ramal, la tabla de conexiones quedaría:

Ramal	$X_R = 1$		$X_R = 2$		$X_R = 3$	
Fase	$X_B =$	X _B				
rase	1	=2	=1	=2	=1	=2
F1	Α	В	В	С	С	А
F2	В	А	С	В	Α	С
F3	С	С	A	A	В	В

Tabla 2.8. Variantes de Conexión de un Transformador Monofásico en un Ramal Bifásico.

Cuando el transformador monofásico se conecta a un ramal monofásico, solo hay una posición posible, por lo que no se genera variable. No obstante, la fase a que conecta el transformador varía de acuerdo a la fase a que se conecta dicho ramal. Como un ramal monofásico puede conectarse a la sección trifásica o a un ramal bifásico, la fase de conexión del banco viene determinada por las tablas II y III que describen los casos posibles.

2.3 Variables Independientes.

De acuerdo al análisis precedente, las variables del problema se representarán por el vector x, que contiene las variables de conexión $X_R y X_B$ de todos los ramales, bancos de transformadores y transformadores monofásicos del circuito.

Los valores de x van a ser números enteros que pertenecen al conjunto de las posibles variantes de conexión de los diferentes elementos.

2.4 Función Objetivo

Las pérdidas de potencia en un tramo k del circuito con resistencia Rf_k de los conductores de fase y Rn_k del conductor neutro, dependen de:

$$\mathcal{A} = \mathcal{A} =$$

Donde $I_{f,k}$ representa la corriente por la fase f e In_k por el conductor neutro en dicho tramo k de NF fases.

Por su parte, las pérdidas de potencia del circuito de N tramos se obtienen por la suma de todos los tramos:

$$\Delta P = \sum_{k=1}^{N} \Delta P_{k} \tag{7}$$

Estas pérdidas dependen de las conexiones de todos los elementos del circuito, por lo que son una función de x.

Para simplificar la formulación, se determinará el costo anual C de las pérdidas de energía del circuito, considerando que todas las cargas tienen igual comportamiento horario, mediante el producto de las pérdidas en horario de máxima demanda por las horas equivalentes Heq y el costo específico de la energía Ce.

De esta manera, el objetivo debe ser minimizar C(x) mediante la selección óptima de las conexiones representadas por x. Sin embargo, como la modificación de una conexión existente representa un costo para la empresa distribuidora, debe restarse este costo K(x) que puede asumirse proporcional al número de cambios efectuados, quedando expresada la función objetivo del problema como:

Como se ve, el problema formulado es no lineal en enteros, lo que hace muy difícil su solución por métodos tradicionales. Además, los métodos enumerativos no pueden aplicarse por la gigantesca cantidad de variantes que surgen. Por ejemplo, un circuito triásico con solo 10 transformadores monofásicos genera 59,049 variantes de conexión posible, mientras que un circuito con 20 bancos de dos transformadores genera 3.66x10¹⁵ variantes.

Estos argumentos conducen a la idea de emplear un algoritmo genético para la solución de este problema.

Capítulo 3: Algoritmo Genético.

3.1 Introducción al Algoritmo Genético Simple (SGA)

Los Algoritmos Genéticos son un ejemplo de método que explota la búsqueda aleatoria "guiada" que ha ganado popularidad en los últimos años debido a la posibilidad de aplicarlos en una gran gama de campos y a las pocas exigencias que impone al problema. Surgen como herramientas para la solución de complejos problemas de búsqueda y optimización, producto del análisis de los sistemas adaptativos en la naturaleza, y como resultado de abstraer la esencia de su funcionamiento.

Los Algoritmos Genéticos (AG) son métodos de búsqueda de propósito general basados en los principios de la genética natural, es decir, son algoritmos de búsqueda que simulan los procesos de la evolución darwiniana a través del uso de operadores genéticos que operan sobre una población de individuos que "evoluciona" de una generación a otra, basados en los mecanismos de la selección natural y la genética. Los Algoritmos Genéticos incluyen conceptos tales como cromosomas, genes, reproducción por cruzamiento, selección, mutación y evolución, los cuales toma prestados de la genética natural para construir un modelo útil y fácil de implementar computacionalmente, de manera que un problema específico actúa como medio ambiente dentro del cual se desempeña una población formada por individuos que son soluciones candidatas del problema en cuestión. Cada uno de estos individuos (fenotipo), está formado por la información contenida en su genoma (genotipo) y que bien pueden ser las variables independientes cuyo valor se desea conocer. Similarmente a como se propone para la evolución natural, los AG tienden a encontrar mejores soluciones al problema de manera progresiva, gracias a la "renovación del material genético" en la población por medio de los llamados operadores genéticos. La adaptación de los individuos a su ambiente, se determina por la función de aptitud (función *fitness*), la cual constituye una medida de la calidad de la solución.

Los AG trabajan con una codificación del conjunto de parámetros, no con los parámetros en sí, y realizan la búsqueda a partir de una población de puntos, no de un punto simple. Los AG solo utilizan la información de la función objetivo, sin derivadas u otro conocimiento auxiliar y se garantiza la obtención de un conjunto amplio de buenas soluciones, y tienen la capacidad de resolver una variedad de problemas muy difíciles de forma rápida y confiable. La mayoría de los especialistas en este tema coinciden en que los AG pueden resolver las dificultades representadas en los problemas de la vida real que a veces son insolubles por otros métodos.

En general, el AG procede como sigue:

- 1. Generación aleatoria o heurística de una población inicial, P(0).
- En cada ciclo evolutivo t (generación), se selecciona un subconjunto de individuos P'(t), después de ser evaluados bajo el criterio predefinido por la función de aptitud para reproducirse. Los individuos más aptos tienen más posibilidades de reproducirse, mientras los menos aptos tienden a desaparecer.
- 3. Se modifica la población seleccionada, para encontrar nuevos puntos en el espacio de búsqueda, aplicando operadores genéticos como el cruzamiento y la mutación.
- Se introducen los nuevos individuos P»(t) en la población de la siguiente generación P(t+1) y se repite el proceso a partir de la selección de los más aptos.
- 5. El fin de la búsqueda queda condicionada a un número determinado de generaciones, a la obtención de un valor aceptable de la función de aptitud, etc.

La solución de un problema utilizando AG comienza por el diseño de la representación de la solución del problema dado, lo que fue analizado en el capítulo anterior. Para resolver el problema planteado se ha empleado un algoritmo genético simple SGA, con codificación binaria de las variables. La única modificación al algoritmo tradicional ha sido la selección de un tamaño de cromosoma variable e igual al mínimo posible para representar en formato binario a cada una de las variables. Esto reduce la cantidad de variantes inválidas generadas por el algoritmo y acelera la búsqueda. Como única restricción se incluyeron las cotas superiores a las variables mediante funciones de penalidad, quedando la función a maximizar por el SGA:

Donde μ es una constante de gran valor (ej. 10⁶) y G(x) representa la función de las restricciones según:

3.2 Balance de un circuito de ejemplo.

Como ejemplo de prueba se ha utilizado el siguiente circuito 13.8 kV de siete nodos que contiene un ramal bifásico y dos monofásicos.

Fig. 3.1. Circuito de ejemplo.

En todos los tramos de línea se ha considerado una resistencia de 1W tanto para los conductores de fase como el neutro. Los restantes datos del circuito aparecen en la siguiente tabla:

Tabla 3.1. Datos del Circuito de Ejemplo.

Nodo	Fases del ramal	Transformadores del banco	Pmax kW	Qmax kvar	Carga monofásica pu
1	3	3	100	50	0.5
2	3	2	100	50	0.5
3	3	1	100	50	1.0
4	3	1	100	50	1.0
5	2	2	100	50	0.5
6	1	1	100	50	1.0
7	1	1	100	50	1.0

Suponiendo la peor configuración con respecto al balance (todas las x tienen valor uno), la carga se concentra fundamentalmente en la fase A y en el neutro, como puede verse en la siguiente tabla:

Tramo	$ I_A $	$ I_B $	$ I_C $	$ I_N $
Trunio	(A)	(A)	(A)	(A)
0 – 1	84.3	10.7	4.1	78.1
1 - 2	77.3	8.1	0.0	78.1
2 - 3	42.1	0.0	0.0	42.1
3-4	14.0	0.0	0.0	14.0
2 - 5	24.6	4.1	0.0	25.3
5-6	14.0	0.0	0.0	14.0
3 - 7	14.0	0.0	0.0	14.0

Tabla 3.2. Distribución de las Corrientes por Fase (Peor Caso).

Las pérdidas de potencia correspondientes a dicha distribución de las corrientes son 31.47 kW en el horario de máxima demanda.

Tramo	$ I_A $	$ I_B $	$ I_C $	$ I_N $
Traino	(A)	(A)	(A)	(A)
0 – 1	35.3	31.6	31.6	7.0
1 - 2	31.6	28.1	24.6	7.0
2 - 3	14.0	14.0	14.0	0.0
3 – 4	14.0	0.0	0.0	14.0
2 - 5	17.7	10.7	0.0	18.6
5-6	14.0	0.0	0.0	14.0
3 - 7	0.0	0.0	14.0	14.0

Tabla 3.3. Distribución de las Corrientes por Fase (Resultados).

Una vez ejecutado el programa de optimización, las corrientes por las fases se modifican a los valores mostrados en la tabla XI, donde puede apreciarse un buen balance de las corrientes de fase y un valor reducido de la corriente en el neutro.

Las pérdidas de potencia correspondientes a esta nueva distribución de las corrientes son solo 8.29 kW, lo que representa un ahorro del 73.7% con respecto a las pérdidas iniciales (Por el carácter teórico del ejemplo, no se ha considerado el costo de los cambios de conexión y solo se han minimizado las pérdidas).

La variante óptima obtenida para las conexiones de los ramales y bancos de transformadores es la siguiente:

D 1	Número	NT 1	Х	Fases				
Ramal	de fases	Nodos	R	F1	F2	F3		
1	3	1,2,3,4	1	Α	В	С		
2	2	5	1	А	В			
3	1	6	1	A				
4	1	7	3	С				

Tabla 3.4 Conexiones Resultantes para los:a) Ramales

b) Bancos de Transformadores

Danaa	Transformadores	Х		Fases	
Banco	del banco	В	F1(TA)	F2(TF)	F3(TF)
1	3	3	С	А	В
2	2	4	С	В	
3	1	2	В		
4	1	1	А		
5	2	2	В	А	
6	1	1	А		
7	1	1	С		

3.3 Balance de un circuito real.

Se realizó el estudio al circuito # 19 de Santa Clara (Anexo I), y siguiendo el convenio tomado en el capítulo anterior y los datos obtenidos sobre el circuito en cuestión se obtuvieron las tablas mostradas en el anexo II (A - estudio de los ramales y B – estudio de los bancos de transformadores). Al criterio seguido también se tuvo en cuenta la presencia de bancos Y-Y y bancos de capacitores los cuales, a pesar de que no aportan cambio de variable en la aplicación del algoritmo, fueron tenidos en cuenta para obtener resultados lo más cercanos posibles a los reales.

En el anexo III podemos ver las corrientes por fase en cada tramo del circuito en la configuración actual. También para tener un criterio del máximo desbalance que pudiera existir se reconfiguraron las conexiones de la peor forma posible para el balance (todas las x tienen valor uno) concentrando la carga fundamentalmente en la fase A y en el neutro, en el mismo anexo se muestran las corrientes para este caso. El propósito de esto también es comprobar si el algoritmo converge a una misma solución al partir de diferentes grados de desbalance, lo cual de esta forma fue comprobado.

El resultado de la corrida del algoritmo se muestra en el anexo IV, donde se muestra primero las corrientes por fase con la nueva configuración, y las configuraciones de los ramales y los bancos de transformadores que se modificaron. Debe tenerse en cuenta que los cambios de conexión en una rama afectan también a las ramas y bancos de transformadores asociados a ella.

Al realizar un análisis comparativo de cada configuración, se encuentra que en el horario de máxima demanda las pérdidas equivalen a:

- En el caso crítico (todas las x=1) las pérdidas son de 333737.00.
- En la configuración actual son de 65685.10
- En el resultado del balance son de 61482.9 representando un ahorro del 6% de la configuración actual y un ahorro del 81,6% respecto al caso crítico.

Se puede observar en la tabla que en algunos tramos que las corrientes y pérdidas varían aumentando o disminuyendo, aunque en la mayor parte de los casos se reducen. Esto es debido a que las pérdidas no dependen únicamente de las condiciones de desbalance, también influyen las resistencias de las líneas y por la dependencia de unos parámetros con otros, el algoritmo busca un acuerdo entre balance y ahorro de energía.

De esta forma, por medio de la aplicación de un algoritmo genético se logró encontrar una configuración más eficiente para el circuito estudiado, el cual era el propósito de este trabajo.

CONCLUSIONES

A partir de los resultados obtenidos con el presente trabajo puede arribarse a las siguientes conclusiones:

- 1. El problema del balance de los circuitos de distribución primaria puede ser fácilmente formulado y resuelto mediante un algoritmo genético simple.
- La formulación realizada es general y podría sin problemas incorporar nuevas facilidades en la función objetivo, como el uso de gráficos de carga individuales para las diferentes cargas en lugar de horas equivalentes totales para el circuito, etc.
- Los ejemplos corridos demuestran que con independencia de los valores de arranque de las variables: peor caso o caso inicial, el procedimiento de optimización conduce a una solución única.
- Los resultados obtenidos con el ejemplo real resuelto significan un ahorro de un 6% de las pérdidas totales en línea del circuito que puede ser mucho mayor en circuitos que muestren un grado de desbalance inicial mayor.

RECOMENDACIONES

- 1. Ampliar la cantidad de circuitos estudiados y validar los resultados con el Radial.
- Investigar el comportamiento del algoritmo genético con respecto a los valores de probabilidades de mutación, cruzamiento, etc. que controlan el comportamiento de dicho algoritmo.
- Simplificar la codificación de los datos de conexión de ramales y bancos de transformadores y la decodificación de la respuesta del programa.
- Modificar la función objetivo para introducir los gráficos de carga y evaluar la conveniencia o no de esta modificación.

BIBLIOGRAFÍA

- [1] Blume L. F., Transformer Egineering . John Willey and Sons, New York, 1965.
- [2] Cobas Pereira, Manuel F, La Calidad del Suministro de la Energía Eléctrica. ISPJAE, 2006.
- [3] Espinosa L. R., Sistemas de Distribución. Limusa, México. 1990.
- [4] Gálvez Lio, Daniel, *Algoritmos Genéticos*. Universidad Central "Marta Abreu" de Las Villas, 1998.
- [5] Gómez Sarduy, Julio Rafael, Determinación de la Eficiencia de los Motores Asincrónicos con Tensiones Desbalanceadas en Condiciones de Campo, Tesis para optar por el grado científico de Doctor en Ciencias Técnicas, 2006.
- [6] Gonen T. Electric Power Distribution System Engineering. Mc-Graw Hill, 1986.

ANEXO I: Monolineal del Circuito #19, Santa Clara.

ANEXO II: Tablas de datos.

A) Datos del Cto # 19 Estudio de los Ramales.

ramal r1	rt	rx	rv	
1	0	3	1	1
2	1	1	3	1
3	1	1	1	1
4	1	1	1	1
5	1	2	2	1
6	1	2	1	1
7	6	1	1	1
8	1	1	3	1
9	1	1	2	1
10	1	2	2	1
11	1	1	1	1
12	1	1	3	1
13	1	1	3	1
14	1	1	3	1
15	1	2	1	1
16	1	1	3	1
17	1	1	3	1
18	1	2	1	1
19	18	1	2	1
20	18	1	1	1
21	18	1	1	1
22	18	1	1	1

En la anterior tabla se mostró:

- r1: Ramal anterior a la que se conecta la rama actual.
- rt: # de fases presentes en la rama.
- rx: Variante de conexión de las ramas.
- rv: Rotación de voltaje.

B)	Datos	del	Cto	# 1	19	Estudio	de	los	Bancos	de	Trans	formaa	lores.
----	-------	-----	-----	-----	----	---------	----	-----	---------------	----	-------	--------	--------

rm	N1	N2	Rf	Rn	lg	ta	tf	tt	tx	tv	Р	Q	K1
1	0	1	0.00021	0.00142	60	50	0	1	3	1	45.465	26.25	1
1	1	2	0.00021	0.00142	20	0	0	1	1	1	0	0	0
2	2	3	0.00142	0.00142	80	50	0	1	1	1	42.35	24.5	1
1	2	4	0.00021	0.00142	75	50	0	1	3	1	42	24.25	1
3	4	5	0.00142	0.00142	70	37.5	0	1	1	1	31.25	18.5	1
3	5	6	0.00142	0.00142	80	0	0	1	1	1	0	0	0
3	6	7	0.00142	0.00142	70	50	0	1	1	1	43.5	25.15	1
3	6	8	0.00142	0.00142	90	50	0	1	1	1	45.5	26.25	1
4	4	9	0.00142	0.00142	70	0	0	1	1	1	0	0	0
4	9	10	0.00142	0.00142	60	37.5	0	1	1	1	34.15	16.72	1
4	9	11	0.00142	0.00142	50	37.5	0	1	1	1	33.5	15.75	1
4	9	12	0.00142	0.00142	40	37.5	0	1	1	1	31.5	18.2	1
4	12	13	0.00142	0.00142	15	0	0	1	1	1	0	0	0
4	13	14	0.00142	0.00142	40	37.5	0	1	1	1	34.09	16.68	1
4	13	15	0.00142	0.00142	80	37.5	0	1	1	1	33.75	15.5	1
4	13	16	0.00142	0.00142	50	0	0	1	1	1	0	0	0
4	16	17	0.00142	0.00142	80	75	0	1	1	1	64.5	36.25	1
4	16	18	0.00142	0.00142	40	25	0	1	1	1	21.5	13.2	1
1	4	19	0.00021	0.00142	75	0	0	1	1	1	0	0	0
5	19	20	0.00065	0.00142	40	50	0	1	1	1	42.43	24.5	1
5	20	21	0.00065	0.00142	130	25	10	2	2	1	15.07	8.66	0.9
1	19	22	0.00021	0.00142	140	50	0	1	3	1	41.56	24.12	1
1	22	23	0.00021	0.00142	30	15	0	1	2	1	12.73	7.35	1
1	23	24	0.00021	0.00142	70	0	0	1	1	1	0	0	0
6	24	25	0.00142	0.00142	35	50	50	2	2	1	65.34	34.75	0.9
7	25	26	0.00142	0.00142	140	100	0	1	1	1	84.46	43.78	1
8	24	27	0.00142	0.00142	70	50	0	1	1	1	45.5	24.15	1
8	27	28	0.00142	0.00142	120	0	0	1	1	1	0	0	0
8	28	29	0.00142	0.00142	40	100	0	1	1	1	84	48.5	1
8	29	30	0.00142	0.00142	50	50	0	1	1	1	45.26	25.9	1
8	28	31	0.00142	0.00142	45	50	0	1	1	1	46.78	26.3	1
8	31	32	0.00142	0.00142	40	0	0	1	1	1	0	0	0
8	32	33	0.00142	0.00142	130	37.5	0	1	1	1	31.45	18.18	1
8	33	34	0.00142	0.00142	140	75	0	1	1	1	63	36.37	1
8	32	35	0.00142	0.00142	80	0	0	1	1	1	0	0	0
8	35	36	0.00142	0.00142	20	100	0	1	1	1	83.91	47.15	1
8	35	37	0.00142	0.00142	70	50	0	1	1	1	42	24.5	1
8	37	38	0.00142	0.00142	40	50	0	1	1	1	42.7	25.75	1
8	37	39	0.00142	0.00142	90	0	0	1	1	1	0	0	0
8	39	40	0.00142	0.00142	270	100	0	1	1	1	84	48.5	1
8	39	41	0.00142	0.00142	50	37.5	0	1	1	1	31.5	19.25	1
8	39	42	0.00142	0.00142	35	50	0	1	1	1	43.45	24.2	1

rm	N1	N2	Rf	Rn	lg	ta	tf	tt	tx	tv	Р	Q	K1
8	42	43	0.00142	0.00142	20	0	0	1	1	1	0	0	0
8	43	44	0.00142	0.00142	40	75	0	1	1	1	65.2	37.5	1
8	43	45	0.00142	0.00142	50	37.5	0	1	1	1	31.8	18.4	1
1	24	46	0.00021	0.00142	55	25	15	2	6	1	22.6	12.99	0.9
1	46	47	0.00021	0.00142	30	0	0	1	1	1	0	0	0
9	47	48	0.00142	0.00142	130	37.5	0	1	1	1	31.5	18.72	1
9	48	49	0.00142	0.00142	50	0	0	1	1	1	0	0	0
9	49	50	0.00142	0.00142	30	37.5	0	1	1	1	32.15	19.25	1
9	50	51	0.00142	0.00142	50	0	0	1	1	1	0	0	0
9	51	52	0.00142	0.00142	30	37.5	0	1	1	1	31.75	18.5	1
9	51	53	0.00142	0.00142	45	25	0	1	1	1	18.37	12	1
9	51	54	0.00142	0.00142	130	0	0	1	1	1	0	0	0
9	54	55	0.00142	0.00142	70	50	0	1	1	1	42.7	25.3	1
9	54	56	0.00142	0.00142	70	75	0	1	1	1	63.65	36.75	1
9	49	57	0.00142	0.00142	50	50	0	1	1	1	45	26.3	1
9	57	58	0.00142	0.00142	60	0	Ő	1	1	1	0	0	0
9	58	59	0.00142	0.00142	80	75	Ő	1	1	1	64	37 3	1
9	58	60	0.00142	0.00142	40	50	Ő	1	1	1	45 26	25.9	1
9	60	61	0.00142	0.00142	50	50	0	1	1	1	45.3	26.3	1
9	61	62	0.00142	0.00112	40	0	0	1	1	1	0	20.5	0
0	62	63	0.00142	0.00142	100	25	0	1	1	1	22.5	13.2	1
0	63	6A	0.00142	0.00142	100	50	0	1	1	1	12.3	24.25	1
9	64	65	0.00142	0.00142	220	50	0	1	1	1	42.45	24.23	1
9	65	66	0.00142	0.00142	230	27.5	0	1	1	1	42.3	24.3 19.27	1
9	63	67	0.00142	0.00142	110	57.5	0	1	1	1	J1.02	10.57	1
9	02 67	0/	0.00142	0.00142	110	50	0	1	1	1	41.0	24.2	1
9	0/	08	0.00142	0.00142	70	50 25	0	1	1	1	40.52	20	1
9	68	69 70	0.00142	0.00142	200	23	0	1	1	1	21.21	12.25	1
9	68	/0	0.00142	0.00142	200	50	0	1	1	1	42.4	24.3	1
9	/0	/1	0.00142	0.00142	110	10	0	1	l	1	8.48	4.9	1
9	71	72	0.00142	0.00142	80	37.5	0	l	l	l	31.8	18.87	l
9	72	73	0.00142	0.00142	60	50	0	1	l	l	42.45	24.12	1
9	68	74	0.00142	0.00142	180	37.5	0	1	1	1	31.82	18.4	1
9	74	75	0.00142	0.00142	30	37.5	0	1	1	1	31.5	18.37	1
9	75	76	0.00142	0.00142	200	50	0	1	1	1	42.43	24.2	1
9	75	77	0.00142	0.00142	300	50	0	1	1	1	41.7	26.34	1
9	77	78	0.00142	0.00142	250	25	0	1	1	1	21.2	12.3	1
1	47	79	0.00021	0.00142	70	50	0	1	3	1	45.46	26.5	1
1	79	80	0.00021	0.00142	60	0	0	1	1	1	0	0	0
10	80	81	0.00142	0.00142	80	37.5	15	2	2	1	36.6	13.95	0.9
1	80	82	0.00021	0.00142	70	37.5	0	1	3	1	30.24	19.5	1
1	82	83	0.00021	0.00142	110	0	0	1	1	1	0	0	0
1	83	84	0.00027	0.00142	30	75	50	2	2	1	75.34	43.3	0.9
11	83	85	0.00142	0.00142	<u>15</u> 0	<u>5</u> 0	0	1	1	1	<u>45</u> .5	26.25	1
rm	N1	N2	Rf	Rn	lg	ta	tf	tt	tx	tv	Р	Q	K1
1	83	86	0.00021	0.00142	130	0	0	1	1	1	0	0	0

1	86	87	0.00021	0.00142	30	0	0	1	1	1	0	0	0
13	87	88	0.00142	0.00142	250	75	0	1	1	1	63	36.37	1
12	87	89	0.00142	0.00142	90	37.5	0	1	1	1	32.4	19.2	1
12	89	90	0.00142	0.00142	50	0	0	1	1	1	0	0	0
12	90	91	0.00142	0.00142	100	25	0	1	1	1	21	12.12	1
12	90	92	0.00065	0.00142	150	0	0	1	1	1	0	0	0
12	92	93	0.00091	0.00142	50	37.5	0	1	1	1	31.48	18.2	1
12	92	94	0.00091	0.00142	120	25	0	1	1	1	21.2	12.3	1
12	92	95	0.00065	0.00142	50	0	0	1	1	1	0	0	0
12	95	96	0.00065	0.00142	50	37.5	0	1	1	1	32.45	18.25	1
12	95	97	0.00065	0.00142	70	0	0	1	1	1	0	0	0
12	97	98	0.00065	0.00142	50	50	0	1	1	1	41.9	24.15	1
12	97	99	0.00142	0.00142	100	50	0	1	1	1	42	24.3	1
1	87	100	0.00021	0.00142	30	37.5	0	1	2	1	31.25	18.9	1
1	100	101	0.00021	0.00142	30	0	0	1	1	1	0	0	0
14	101	102	0.00142	0.00142	200	0	0	1	1	1	42.5	23.25	0
15	101	103	0.00142	0.00142	50	100	25	2	1	1	37.67	21.65	0.85
15	103	104	0.00142	0.00142	150	50	0	1	1	1	45.5	26.45	1
1	101	105	0.00021	0.00142	30	37.5	0	1	3	1	31.5	18.18	1
1	105	106	0.00027	0.00142	50	50	0	1	1	1	42.3	24.5	1
1	106	107	0.00027	0.00142	100	0	0	1	1	1	0	0	0
16	107	108	0.00142	0.00142	50	37.5	0	1	1	1	31.5	18.2	1
1	107	109	0.00027	0.00142	50	37.5	0	1	1	1	31.7	16.19	1
1	109	110	0.00027	0.00142	70	0	0	1	1	1	0	0	0
17	110	111	0.00142	0.00142	50	37.5	Ő	1	1	1	31.45	18.2	1
1	110	112	0.00027	0.00142	120	50	0	1	1	1	45.6	23.5	1
1	112	113	0.00027	0.00142	60	37.5	Ő	1	1	1	31 73	18.1	1
1	113	114	0.00027	0.00142	170	0	Ő	1	1	1	0	0	0
1	114	115	0.00065	0.00142	400	167	167	3	1	1	288	216	06
18	114	116	0.00142	0.00142	40	0	0	1	1	1	0	0	0.0
18	116	117	0.00142	0.00142	50	Ő	Ő	1	1	1	Ő	Ő	Ő
19	117	118	0.00065	0.00142	30	25	0	1	1	1	21 21	12.25	1
19	118	119	0.00142	0.00142	100	75	Ő	1	1	1	68.2	37.5	1
19	119	120	0.00142	0.00142	100	50	Ő	1	1	1	42 43	24 25	1
18	117	120	0.00112	0.00112	60	0	Ő	1	1	1	0	0	0
18	121	121	0.00005	0.00112	50	75	15	2	1	1	72 05	35.93	09
20	121	122	0.000003	0.00142	20	50	0	1	1	1	45 46	24.3	0.9
20	121	123	0.00142	0.00142	100	37.5	0	1	1	1	34 12	197	1
18	116	124	0.00142	0.00142	100	100	0	1	1	1	90.93	52.5	1
18	125	125	0.00142	0.00142	250	75	0	1	1	1	68 10	39 37	1
18	125	120	0.00142	0.00142	0	, 5	0	1	1	1	00.17	0	
10 21	120	12/	0.00142	0.00142	100	375	0	1	1	1	34 00	19.68	1
rm	N1	N2	Rf	Rn	100	 ta	tf	tt	tv	tv	<u>- Эң. О</u> У Р	0	K1
18	127	120	0.00142	0.00142	<u>-15</u> 50	<u></u>	<u>n</u>	1	1	1		<u> </u>	0
18	127	12)	0.00142	0.00142	100	25	15	2	2	1	21.5	13.2	0 0
10 22	129	121	0.00142	0.00142	110	2J 0	15	∠ 1	∠ 1	1	21.J 0	13.2	0.9
<u> </u>	147	121	0.00142	0.00142	110	U	U	1	1	1	U	0	U

22	131	132	0.00142	0.00142	50	50	0	1	1	1	45.5	24.25	1
22	131	133	0.00142	0.00142	50	0	0	1	1	1	0	0	0
22	133	134	0.00142	0.00142	50	37.5	0	1	1	1	34.09	19.68	1
22	134	135	0.00142	0.00142	300	37.5	0	1	1	1	34.08	19.7	1
22	133	136	0.00142	0.00142	50	37.5	0	1	1	1	34.15	18.75	1
22	136	137	0.00142	0.00142	200	75	0	1	1	1	68.21	39.4	1
22	137	138	0.00142	0.00142	500	37.5	0	1	1	1	34.13	19.71	1

En la anterior tabla se mostró:

- rm: rama a la que pertenece el tramo entre los nodos que se hace referencia.
- N1: Nodo inicial.
- N2: Nodo de destino.
- Rf: Resistencia de las fases en ohm/m conforme al calibre de la línea.
- Rn: Resistencia del neutro en ohm/m conforme al calibre de la línea.
- lg: Longitud de la línea que conecta el tramo entre los nodos N1 y N2.
- ta: Transformador de alumbrado.
- tf: Transformador(es) de fuerza.
- tx: Conexión actual de los bancos.
- tv: Rotación de voltajes.
- P: Potencia activa que entrega el banco.
- Q: Potencia reactiva que entrega el banco.
- K1: %Carga monofásica/100

ANEXO III: Corrientes por las ramas

		Configu	uración Ao	ctual del C	Circuito	Caso Crítico (Todas las X =				
N1	N2	Ia (A)	Ib (A)	Ic (A)	In (A)	Ia (A)	Ib (A)	Ic (A)	In (A)	
0	1	218.902	197.352	204.352	7.1408	608.677	6.737	18.1191	591.037	
1	2	212.321	197.352	204.352	6.0219	602.089	6.737	18.1191	584.448	
2	3	0	0	6.1408	6.1408	6.1408	0	0	6.1408	
2	4	212.321	197.352	198.237	0.9361	595.949	6.737	18.1191	578.307	
4	5	17.4573	0	0	17.4573	17.4573	0	0	17.4573	
5	6	12.8995	0	0	12.8995	12.8995	0	0	12.8995	
6	7	6.3066	0	0	6.3066	6.3066	0	0	6.3066	
6	8	6.593	0	0	6.593	6.593	0	0	6.593	
4	9	35.8327	0	0	35.8327	35.8327	0	0	35.8327	
9	10	4.7724	0	0	4.7724	4.7724	0	0	4.7724	
9	11	4.6461	0	0	4.6461	4.6461	0	0	4.6461	
9	12	26.422	0	0	26.422	26.422	0	0	26.422	
12	13	21.8584	0	0	21.8584	21.8584	0	0	21.8584	
13	14	4.7634	0	0	4.7634	4.7634	0	0	4.7634	
13	15	4.6614	0	0	4.6614	4.6614	0	0	4.6614	
13	16	12.4511	0	0	12.4511	12.4511	0	0	12.4511	
16	17	9.2864	0	0	9.2864	9.2864	0	0	9.2864	
16	18	3.1665	0	0	3.1665	3.1665	0	0	3.1665	
4	19	159.061	197.352	192.177	49.7429	536.587	6.737	18.1191	518.965	
19	20	0	6.259	2.0734	5.6092	8.2222	0.1259	0	8.2244	
20	21	0	0.1259	2.0734	2.081	2.0734	0.1259	0	2.081	
19	22	159.061	191.094	190.108	45.1349	528.367	6.6111	18.1191	510.742	
22	23	159.061	191.094	184.106	42.8035	522.337	6.6111	18.1191	504.711	
23	24	159.061	189.25	184.106	41.6212	520.493	6.6111	18.1191	502.866	
24	25	12.4047	8.8282	0	11.4162	20.7641	0.5363	0	20.7747	
25	26	11.9402	0	0	11.9402	11.9402	0	0	11.9402	
24	27	0	0	107.144	107.144	107.144	0	0	107.144	
27	28	0	0	100.683	100.683	100.683	0	0	100.683	
28	29	0	0	18.719	18.719	18.719	0	0	18.719	
29	30	0	0	6.545	6.545	6.545	0	0	6.545	
28	31	0	0	81.9635	81.9635	81.9635	0	0	81.9635	
31	32	0	0	75.2282	75.2282	75.2282	0	0	75.2282	
32	33	0	0	13.6896	13.6896	13.6896	0	0	13.6896	
33	34	0	0	9.1302	9.1302	9.1302	0	0	9.1302	
32	35	0	0	61.5386	61.5386	61.5386	0	0	61.5386	

		Configu	uración A	ctual del C	Circuito	Caso Crítico (Todas las X = 1)				
N1	N2	Ia (A)	Ib (A)	Ic (A)	In (A)	Ia (A)	Ib (A)	Ic (A)	In (A)	
35	36	0	0	12.0804	12.0804	12.0804	0	0	12.0804	
35	37	0	0	49.4593	49.4593	49.4593	0	0	49.4593	
37	38	0	0	6.2584	6.2584	6.2584	0	0	6.2584	
37	39	0	0	37.099	37.099	37.099	0	0	37.099	
39	40	0	0	12.1741	12.1741	12.1741	0	0	12.1741	
39	41	0	0	4.6334	4.6334	4.6334	0	0	4.6334	
39	42	0	0	20.2933	20.2933	20.2933	0	0	20.2933	
42	43	0	0	14.0515	14.0515	14.0515	0	0	14.0515	
43	44	0	0	9.4403	9.4403	9.4403	0	0	9.4403	
43	45	0	0	4.6112	4.6112	4.6112	0	0	4.6112	
24	46	146.664	180.434	78.1374	91.5288	392.599	6.075	18.1191	374.951	
46	47	143.555	180.434	77.9996	91.7273	389.493	5.8861	18.1191	371.841	
47	48	0	139.085	0	139.085	139.085	0	0	139.085	
48	49	0	134.486	0	134.486	134.486	0	0	134.486	
49	50	0	27.52	0	27.52	27.52	0	0	27.52	
50	51	0	22.8169	0	22.8169	22.8169	0	0	22.8169	
51	52	0	4.6121	0	4.6121	4.6121	0	0	4.6121	
51	53	0	2.754	0	2.754	2.754	0	0	2.754	
51	54	0	15.4539	0	15.4539	15.4539	0	0	15.4539	
54	55	0	6.2294	0	6.2294	6.2294	0	0	6.2294	
54	56	0	9.2247	0	9.2247	9.2247	0	0	9.2247	
49	57	0	106.967	0	106.967	106.967	0	0	106.967	
57	58	0	100.425	0	100.425	100.425	0	0	100.425	
58	59	0	9.2974	0	9.2974	9.2974	0	0	9.2974	
58	60	0	91.1275	0	91.1275	91.1275	0	0	91.1275	
60	61	0	84.5828	0	84.5828	84.5828	0	0	84.5828	
61	62	0	78.0085	0	78.0085	78.0085	0	0	78.0085	
62	63	0	20.1639	0	20.1639	20.1639	0	0	20.1639	
63	64	0	16.8899	0	16.8899	16.8899	0	0	16.8899	
64	65	0	10.7561	0	10.7561	10.7561	0	0	10.7561	
65	66	0	4.6115	0	4.6115	4.6115	0	0	4.6115	
62	67	0	57.8455	0	57.8455	57.8455	0	0	57.8455	
67	68	0	51.8052	0	51.8052	51.8052	0	0	51.8052	
68	69	0	3.0742	0	3.0742	3.0742	0	0	3.0742	
68	70	0	18.1314	0	18.1314	18.1314	0	0	18.1314	
70	71	0	11.9978	0	11.9978	11.9978	0	0	11.9978	
71	72	0	10.7685	0	10.7685	10.7685	0	0	10.7685	
		Config	uración A	ctual del C	Circuito	Caso	Crítico (T	odas las X	(=1)	
N1	N2	Ia (A)	Ib (A)	Ic (A)	In (A)	Ia (A)	Ib (A)	Ic (A)	In (A)	

72	73	0	6.1279	0	6.1279	6.1279	0	0	6.1279	
68	74	0	24.5838	0	24.5838	24.5838	0	0	24.5838	
74	75	0	19.9706	0	19.9706	19.9706	0	0	19.9706	
75	76	0	6.1307	0	6.1307	6.1307	0	0	6.1307	
75	77	0	9.2653	0	9.2653	9.2653	0	0	9.2653	
77	78	0	3.0762	0	3.0762	3.0762	0	0	3.0762	
47	79	143.555	41.4363	77.9996	76.8721	250.492	5.8861	18.1191	232.756	
79	80	143.555	41.4363	71.5966	78.0883	243.893	5.8861	18.1191	226.151	
80	81	0	0.2838	4.6724	4.6896	4.6724	0.2838	0	4.6896	
80	82	143.555	41.1786	66.9346	80.3676	239.24	5.6057	18.1191	221.474	
82	83	143.555	41.1786	62.6461	81.532	234.741	5.6057	18.1191	216.963	
83	84	0.6297	10.3659	0	10.4041	10.3659	0.6297	0	10.4041	
83	85	6.593	0	0	6.593	6.593	0	0	6.593	
83	86	136.45	30.8225	62.6461	81.6565	217.811	4.976	18.1191	200.004	
86	87	142.439	37.918	66.784	81.6565	223.905	13.5052	13.1301	200.004	
87	88	0	0	9.1302	9.1302	9.1302	0	0	9.1302	
87	89	0	0	32.2425	32.2425	32.2425	0	0	32.2425	
89	90	0	0	27.5159	27.5159	27.5159	0	0	27.5159	
90	91	0	0	3.0432	3.0432	3.0432	0	0	3.0432	
90	92	0	0	24.4727	24.4727	24.4727	0	0	24.4727	
92	93	0	0	4.5639	4.5639	4.5639	0	0	4.5639	
92	94	0	0	3.0762	3.0762	3.0762	0	0	3.0762	
92	95	0	0	16.8326	16.8326	16.8326	0	0	16.8326	
95	96	0	0	4.6728	4.6728	4.6728	0	0	4.6728	
95	97	0	0	12.1601	12.1601	12.1601	0	0	12.1601	
97	98	0	0	6.0699	6.0699	6.0699	0	0	6.0699	
97	99	0	0	6.0902	6.0902	6.0902	0	0	6.0902	
87	100	142.439	37.918	25.9238	99.1805	182.534	13.5052	13.1301	158.631	
100	101	142.439	33.4391	25.9238	101.179	177.95	13.5052	13.1301	154.048	
101	102	0	0	0	0	0	0	0	0	
101	103	11.6528	0.4723	0	11.6733	11.6528	0.4723	0	11.6733	
103	104	6.6056	0	0	6.6056	6.6056	0	0	6.6056	
101	105	130.787	33.1031	25.9238	89.5062	166.298	13.3393	13.1301	142.399	
105	106	130.787	33.1031	21.5353	92.1518	161.733	13.3393	13.1301	137.834	
106	107	124.652	33.1031	21.5353	86.0586	155.598	13.3393	13.1301	131.699	
107	108	0	0	4.5661	4.5661	4.5661	0	0	4.5661	
107	109	124.652	33.1031	17.2381	88.8826	151.032	13.3393	13.1301	127.133	
		Config	uración A	ctual del C	Circuito	Caso Crítico (Todas las X = 1)				
N1	N2	Ia (A)	Ib (A)	Ic (A)	In (A)	Ia (A)	Ib (A)	Ic (A)	In (A)	
109	110	120.194	33.1031	17.2381	84.5235	146.573	13.3393	13.1301	122.67	
110	111	0	0	4.5606	4.5606	4.5606	0	0	4.5606	

110	112	120.194	33.1031	13.1301	87.5234	142.013	13.3393	13.1301	118.11
112	113	113.769	33.1031	13.1301	81.3232	135.586	13.3393	13.1301	111.678
113	114	109.185	33.1031	13.1301	76.8784	131.002	13.3393	13.1301	107.093
114	115	24.0981	13.1301	13.1301	0	24.0981	13.1301	13.1301	0
114	116	85.242	22.4774	0	76.8784	107.066	0.7657	0	107.093
116	117	21.0171	19.4687	0	20.3625	39.9921	0.5834	0	40.0212
117	118	0	18.9757	0	18.9757	18.9757	0	0	18.9757
118	119	0	15.9018	0	15.9018	15.9018	0	0	15.9018
119	120	0	6.1338	0	6.1338	6.1338	0	0	6.1338
117	121	21.0171	0.5834	0	21.0467	21.0171	0.5834	0	21.0467
121	122	9.6043	0.5834	0	9.6397	9.6043	0.5834	0	9.6397
121	123	11.4132	0	0	11.4132	11.4132	0	0	11.4132
123	124	4.945	0	0	4.945	4.945	0	0	4.945
116	125	64.2282	3.0095	0	62.7772	67.0768	0.1828	0	67.0717
125	126	51.05	3.0095	0	49.6109	53.8985	0.1828	0	53.8933
126	127	41.1674	3.0095	0	39.7426	44.0159	0.1828	0	44.0107
127	128	4.9405	0	0	4.9405	4.9405	0	0	4.9405
127	129	36.2271	3.0095	0	34.8123	39.0754	0.1828	0	39.0702
129	130	0.1828	3.0095	0	3.0206	3.0095	0.1828	0	3.0206
129	131	36.072	0	0	36.072	36.072	0	0	36.072
131	132	6.4712	0	0	6.4712	6.4712	0	0	6.4712
131	133	29.6033	0	0	29.6033	29.6033	0	0	29.6033
133	134	9.8811	0	0	9.8811	9.8811	0	0	9.8811
134	135	4.9406	0	0	4.9406	4.9406	0	0	4.9406
133	136	19.7223	0	0	19.7223	19.7223	0	0	19.7223
136	137	14.8334	0	0	14.8334	14.8334	0	0	14.8334
137	138	4.9467	0	0	4.9467	4.9467	0	0	4.9467

En la anterior tabla se mostró:

N1: Nodo inicial.

N2: Nodo de destino

Ia, Ib, Ic (A): Corrientes por las respectivas fases en cada tramo.

ANEXO IV: Resultados de la corrida del algoritmo.

N1	N2	Ia (A)	Ib (A)	Ic (A)	In (A)	N1	N2	Ia (A)	Ib (A)	Ic (A)	In (A)
0	1	249,03	195,67	176,05	51,925	35	37	0	0	49,459	49,459
1	2	242,45	195,67	176,05	45,765	37	38	0	0	6,2584	6,2584
2	3	6,1408	0	0	6,1408	37	39	0	0	37,099	37,099
2	4	236,31	195,67	176,05	40,144	39	40	0	0	12,174	12,174
4	5	0	0	17,457	17,457	39	41	0	0	4,6334	4,6334
5	6	0	0	12,9	12,9	39	42	0	0	20,293	20,293
6	7	0	0	6,3066	6,3066	42	43	0	0	14,052	14,052
6	8	0	0	6,593	6,593	43	44	0	0	9,4403	9,4403
4	9	35,833	0	0	35,833	43	45	0	0	4,6112	4,6112
9	10	4,7724	0	0	4,7724	24	46	174,49	178,62	53,153	121,45
9	11	4,6461	0	0	4,6461	46	47	171,39	178,45	53,153	120,05
9	12	26,422	0	0	26,422	47	48	0	139,09	0	139,09
12	13	21,858	0	0	21,858	48	49	0	134,49	0	134,49
13	14	4,7634	0	0	4,7634	49	50	0	27,52	0	27,52
13	15	4,6614	0	0	4,6614	50	51	0	22,817	0	22,817
13	16	12,451	0	0	12,451	51	52	0	4,6121	0	4,6121
16	17	9,2864	0	0	9,2864	51	53	0	2,754	0	2,754
16	18	3,1665	0	0	3,1665	51	54	0	15,454	0	15,454
4	19	194,4	195,67	158,7	34,063	54	55	0	6,2294	0	6,2294
19	20	0,1259	8,222	0	8,2238	54	56	0	9,2247	0	9,2247
20	21	0,1259	2,0734	0	2,081	49	57	0	106,97	0	106,97
19	22	194,29	187,45	158,7	27,606	57	58	0	100,42	0	100,42
22	23	188,27	187,45	158,7	26,715	58	59	0	9,2974	0	9,2974
23	24	186,43	187,45	158,7	26,713	58	60	0	91,128	0	91,128
24	25	11,94	8,8282	0,5363	9,8622	60	61	0	84,583	0	84,583
25	26	11,94	0	0	11,94	61	62	0	78,009	0	78,009
24	27	0	0	107,14	107,14	62	63	0	20,164	0	20,164
27	28	0	0	100,68	100,68	63	64	0	16,89	0	16,89
28	29	0	0	18,719	18,719	64	65	0	10,756	0	10,756
29	30	0	0	6,545	6,545	65	66	0	4,6115	0	4,6115
28	31	0	0	81,964	81,964	62	67	0	57,846	0	57,846
31	32	0	0	75,228	75,228	67	68	0	51,805	0	51,805
32	33	0	0	13,69	13,69	68	69	0	3,0742	0	3,0742
33	34	0	0	9,1302	9,1302	68	70	0	18,131	0	18,131
32	35	0	0	61,539	61,539	70	71	0	11,998	0	11,998

A) Corrientes por las ramas con la nueva configuración.

35	36	0	0	12,08	12,08	71	72	0	10,769	0	10,769
N1	N2	Ia (A)	Ib (A)	Ic (A)	In (A)	N1	N2	Ia (A)	Ib (A)	Ic (A)	In (A)
72	73	0	6,1279	0	6,1279	107	109	92,103	34,584	47,533	40,153
68	74	0	24,584	0	24,584	109	110	87,646	34,584	47,533	35,828
74	75	0	19,971	0	19,971	110	111	4,5606	0	0	4,5606
75	76	0	6,1307	0	6,1307	110	112	83,086	34,584	47,533	31,533
75	77	0	9,2653	0	9,2653	112	113	76,663	34,584	47,533	25,496
77	78	0	3,0762	0	3,0762	113	114	72,08	34,584	47,533	21,436
47	79	171,39	39,449	53,153	113,4	114	115	24,098	13,13	13,13	0
79	80	171,39	32,864	53,153	117,23	114	116	48,138	23,916	35,666	21,436
80	81	0,2838	0	4,6724	4,6896	116	117	11,91	18,976	9,6043	8,2193
80	82	171,16	32,864	48,6	119,46	117	118	0	18,976	0	18,976
82	83	166,66	32,864	48,6	114,98	118	119	0	15,902	0	15,902
83	84	10,366	0,6297	0	10,404	119	120	0	6,1338	0	6,1338
83	85	6,593	0	0	6,593	117	121	11,91	0	9,6043	11,069
83	86	149,75	32,297	48,6	98,196	121	122	0,5834	0	9,6043	9,6397
86	87	155,76	39,429	52,064	98,196	121	123	11,413	0	0	11,413
87	88	9,1302	0	0	9,1302	123	124	4,945	0	0	4,945
87	89	32,243	0	0	32,243	116	125	36,234	4,9405	26,066	28,087
89	90	27,516	0	0	27,516	125	126	36,234	4,9405	12,888	28,44
90	91	3,0432	0	0	3,0432	126	127	36,234	4,9405	3,0095	32,43
90	92	24,473	0	0	24,473	127	128	0	4,9405	0	4,9405
92	93	4,5639	0	0	4,5639	127	129	36,234	0	3,0095	35,016
92	94	3,0762	0	0	3,0762	129	130	0,1828	0	3,0095	3,0206
92	95	16,833	0	0	16,833	129	131	36,072	0	0	36,072
95	96	4,6728	0	0	4,6728	131	132	6,4712	0	0	6,4712
95	97	12,16	0	0	12,16	131	133	29,603	0	0	29,603
97	98	6,0699	0	0	6,0699	133	134	9,8811	0	0	9,8811
97	99	6,0902	0	0	6,0902	134	135	4,9406	0	0	4,9406
87	100	114,39	39,429	52,064	57,253	133	136	19,722	0	0	19,722
100	101	114,39	39,429	47,533	58,832	136	137	14,833	0	0	14,833
101	102	0	0	0	0	137	138	4,9467	0	0	4,9467
101	103	7,0196	5,0498	0	6,6838						
103	104	6,6056	0	0	6,6056						
101	105	107,37	34,584	47,533	54,952						
105	106	102,8	34,584	47,533	50,497						
106	107	96,669	34,584	47,533	44,547						
107	108	4,5661	0	0	4,5661						

B) Ramales que cambian de conexión.

rama	# fases	X ₀	X ₁
2	1	С	A
3	1	Α	С
5	2	BC	AB
6	2	AB	BC
7	1	Α	В
10	2	BC	CA
12	1	С	А
13	1	С	А
14	1	С	А
16	1	С	А
17	1	С	А
18	2	AB	CA
19	1	В	А
20	1	А	С

En la anterior tabla se mostró:

X₀: Conexión inicial de la rama.

X₁: Nueva conexión de la rama.

rm	Ν	tt	ta ₀	tf ₀	ta ₁	tf ₁	X ₀	X ₁
1	1	1	С		Α		3	1
1	4	1	С		А		3	1
5	20	1	В		В		1	2
5	21	2	С	В	В	Α	2	2
1	22	1	С		А		3	1
1	23	1	В		А		2	1
6	25	2	В	А	В	С	2	1
1	46	2	А	С	А	В	6	1
1	79	1	С		В		3	2
10	81	2	С	В	С	Α	2	1
1	82	1	С		А		3	1
1	83	1	А		В		1	2
1	84	2	В	Α	А	В	2	1
1	100	1	В		С		2	3
1	101	1	А		В		1	2
15	103	2	А	В	В	Α	1	2
1	105	1	С		А		3	1
1	114	1	А		С		1	3
18	116	1	А		С		1	1
18	117	1	А		С		1	1
18	121	1	А		С		1	1
18	122	2	А	В	С	Α	1	1
18	125	1	А		С		1	1
18	126	1	А		С		1	1
18	127	1	А		С		1	1
18	129	1	А		С		1	1
18	130	2	В	А	С	Α	2	1

En la anterior tabla se mostró:

- rm: Rama en que se encuentra el banco.
- N: Nodo al que está conectado el banco.
- tt: Tipo de banco.
- ta_0 , tf_0 : Fases a las que están conectadas inicialmente los transformadores.
- ta_1, tf_1 : Nuevas fases a que se conectan.