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Abstract: Computational approaches are developed to design or rationally select, from structural databases, new lead

trichomonacidal compounds. First, a data set of 111 compounds was split (design) into training and predicting series using

hierarchical and partitional cluster analyses. Later, two discriminant functions were derived with the use of non-stochastic

and stochastic atom-type linear indices. The obtained LDA (linear discrimination analysis)-based QSAR (quantitative

structure-activity relationship) models, using non-stochastic and stochastic descriptors were able to classify correctly

95.56% (90.48%) and 91.11% (85.71%) of the compounds in training (test) sets, respectively. The result of predictions on

the 10% full-out cross-validation test also evidenced the quality (robustness, stability and predictive power) of the

obtained models. These models were orthogonalized using the Randi_ orthogonalization procedure. Afterwards, a

simulation experiment of virtual screening was conducted to test the possibilities of the classification models developed

here in detecting antitrichomonal chemicals of diverse chemical structures. In this sense, the 100.00% and 77.77% of the

screened compounds were detected by the LDA-based QSAR models (Eq. 13 and Eq. 14, correspondingly) as

trichomonacidal. Finally, new lead trichomonacidals were discovered by prediction of their antirichomonal activity with

obtained models. The most of tested chemicals exhibit the predicted antitrichomonal effect in the performed ligand-based

virtual screening, yielding an accuracy of the 90.48% (19/21). These results support a role for TOMOCOMD-CARDD

descriptors in the biosilico discovery of new compounds.

Keywords: TOMOCOMD-CARDD Software, Atom-Based Linear Index, LDA-Based QSAR Model, Trichomonacidal
Activity, Virtual Screening, Lead Antitrichomonal Compound, Cytocidal activity, Heterocycles

1. INTRODUCTION

Trichomonas vaginalis is a parasitic protozoan that is the
cause of trichomoniasis, a sexually transmitted disease of
worldwide importance [1-3]. Recent estimates have
suggested that T. vaginalis infections account for nearly one-
third of the 15.4 million cases of sexually transmitted
diseases in the United States [4].

 
In 1995, the World Health

Organization estimated the number of adults with
trichomoniasis at 170 million worldwide, more than the
combined numbers for gonorrhea, syphilis, and chlamydia
[5]. Infection with this organism has been linked to various

*Address correspondence to this author at the Department of Pharmacy,
Faculty of Chemistry-Pharmacy and Department of Drug Design, Chemical
Bioactive Center. Central University of Las Villas, Santa Clara, 54830, Villa
Clara, Cuba; Tel: 53-42-281192, 281473; Fax: 53-42-281130, 281455;
E-mail: ymponce@gmail.com

additional pathological manifestations, including cervical
neoplasia [6-8], atypical pelvic inflammatory disease [9], and
tubal infertility [10], and has been reported to be a risk factor
in the development of posthysterectomy cuff cellulites [11].
Infection with T. vaginalis has been linked to premature
rupture of placental membranes, premature birth, and low
birth weight [12,13]. T. vaginalis infection has also been
reported to increase intrauterine transmission of
cytomegalovirus [14] and elevate the risk of acquiring
human immunodeficiency virus [15].

Metronidazole has been the drug of choice for T .
vaginalis infections since 1960 [16] and remains effective
today, with a cure rate of approximately 95% [17].
Metronidazole-resistant trichomoniasis had been reported in
1962 [18], two years after metronidazole introduction to T.
vaginalis therapy. Although metronidazole resistance has
been considered rare, treatment of these rare patients who do



2    Current Drug Discovery Technologies, 2005, Vol. 2, No. 4 Marrero-Ponce et al.

not respond to treatment is extremely problematic for
physicians and is associated with enormous patient suffering
[19].

Clearly, new Trichomonacidal agents are needed to treat
resistant organisms. Although there are many other
nitroimidazoles, only metronidazole is available in North
America. Furthermore, all the nitroimidazoles have similar
modes of antimicrobial activity [20], and so resistance to
metronidazole often includes resistance to the other
nitroimidazoles [21].

However, the great cost associated to the development of
new compounds and the small economic size of the market
for antiprotozoal drugs makes this development slow. For
this reason, it is necessary to develop computational methods
permitting theoretical –in silico- evaluations of
trichomonacidal activity for virtual libraries of chemicals
before these compounds are synthesized in the laboratory.
This ‘in silico’ world of data, analysis, hypothesis, and
models that reside inside a computer is alternative to the
‘real’ world of synthesis and screening of compounds in the
laboratory [22,23].

At present, many large pharmaceutical industries have
reoriented their research strategies seeking to solve the
problem of generation/selection of novel chemical entities
(NCEs), one of the major bottlenecks in the drug discovery
process. In fact, currently most integration projects include
efforts to integrate the data associated with NCE generation
[24]. Alternatively, several approaches to the computer-aided
molecular design and high-throughput in silico screening (or
virtual high-throughput screening) have been introduced in
the literature [25]. Nevertheless, novel computational
methods and strategies are required to deliver a system that
significantly reduces the time-to-market and research and
development (R&D) spendings, and increase the rate at
which NCEs progress through the pipeline. Such studies if
they are implemented successfully can deliver substantial
benefits and act as the bedrock for NCE selection [24].

In this context, our research group has recently
introduced a novel scheme to perform rational –in silico-
molecular design (or selection/identification of lead drug-
like chemicals) and QSAR/QSPR studies, known as
T O M O C O M D - C A R D D  (acronym of TOpological
MOlecular COMputer Design-Computer Aided “ Rational”
Drug Design) [26]. This method has been developed to
generate 2D (topologic), 2.5 (3D-chiral) and 3D (topographic
and geometric) molecular descriptors based on the
application of the discrete mathematics and linear algebra
theory to chemistry. In this sense, atomic, atom-type and
total linear and quadratic molecular fingerprints have been
defined in analogy to the linear and quadratic mathematical
maps [27,28]. This In silico, method has been successfully
applied to the prediction of several physical,
physicochemical and chemical properties of organic
compounds [27-30]. In addition, TOMOCOMD-CARDD has
been extended to consider three-dimensional features of
small/medium-sized molecules based on the trigonometric-
3D-chirality-correction factor approach [31].

The latter opportunity has allowed the description of the
significance-interpretation and the comparison to other

molecular descriptors [28,29]. The prediction of the
pharmacokinetic properties of organic compounds is a
problem that can also be addressed using this approach. This
method has been used to estimate the intestinal–epithelial
transport of drugs in human adenocarcinoma of colon cell
line type 2 (Caco-2) cultures of a heterogeneous series of
drug-like compounds [32-34]. The obtained results
suggested that the TOMOCOMD-CARDD method was able
to predict the permeability values and it proved to be a good
tool for studying the oral absorption of drug candidates
during the drug development process.

The TOMOCOMD-CARDD strategy has also been useful
for the selection of novel subsystems of compounds having a
desired property/activity. It was successfully applied to the
virtual (computational) screening of novel anthelmintic
compounds, which were then synthesized and in vivo
evaluated on Fasciola hepatica [35,36].

Studies for the fast-track discovery of novel
paramphistomicides, antibacterial and antimalarial
compounds were also conducted with this theoretical
approach [37-40].

Later, promising results have been found in the modeling
of the interaction between drugs and HIV _-RNA packaging-
region in the field of bioinformatics using the TOMOCOMD-
CANAR (Computed-Aided Nucleic Acid Research) approach
[41,42]. Finally, an alternative formulation of our approach
for structural characterization of proteins was carried out
recently [43,44]. This extended method [TOMOCOMD-
CAMPS (Computed-Aided Modeling in Protein Science)]
was used to encompass protein stability studies –specifically
how alanine substitution mutation on Arc repressor wild-
type protein affects protein stability– by means of a
combination of protein linear or quadratic indices
(macromolecular fingerprints) and statistical (linear and non-
linear model) methods [43,44].

The main objective of this work was to use non-
stochastic and stochastic atom-type linear indices to generate
predictive LDA (linear discriminant analysis)-based QSAR
models enabling the selection of new hits and lead drug-like
compounds with antitrichomonal activity. The in vitro
evaluation of a new lead series of heterocyclic compounds
with antitrichomonal activity is also presented.

2. MATERIALS AND METHODS

2.1. TOMOCOMD-CARDD Approach and 2D Atom-
Based Linear Indices

TOMOCOMD is an interactive program for molecular
design and bioinformatic research [26]. It is composed of
four subprograms; each one of them allows drawing the
structures (drawing mode) and calculating molecular 2D/3D
(calculation mode) descriptors. The modules are named
CARDD (Computed-Aided ‘Rational’ Drug Design),
CAMPS (Computed-Aided Modeling in Protein Science),
CANAR (Computed-Aided Nucleic Acid Research) and
CABPD (Computed-Aided Bio-Polymers Docking).

In the present report, we outline salient features
concerned with only one of these subprograms, CARDD and
with the calculation of non-stochastic and stochastic 2D
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atom-based linear indices. The mathematical basis
concerning these novel molecular descriptors has been
described in previous reports [28,30,35,38,40], thus we will
outline only the fundamental remarks.

Briefly, this method codifies the molecular structure by
means of mathematical linear maps. In order to calculate
these applications for a molecule, the nxn k

th
 “non-stochastic

and stochastic graph–theoretic electronic-density matrices”,
M

k
 and S

k
 are constructed,

 
where n is the number of atoms in

the molecule [28,30,35,38,40]. The coefficients
 k

mij are the
elements of the k

th
 power of the symmetric square matrix

M(G) of the molecular pseudograph G and are defined as
follows [28,30,35,38,40]:

mij  = Pij if i  j and  ek  E(G)   (1)

= Lii if i = j

= 0 otherwise

where, E(G) represents the set of edges of G. Pij is the
number of edges (bonds) between vertices (atoms) vi  and  vj,
and Lii is the number of loops in vi.

The elements mij =  Pij of such a matrix represent the
number of bonds between an atom i and the other j. The
matrix M

k
 provides the number of walks of length k that

links the vertices vi and vj. For this reason, each edge in M
1

represents 2 electrons belonging to the covalent bond
between atoms (vertices) vi  and vj; e.g. the inputs of M

1
 are

equal to 1, 2 or 3 when single, double or triple bonds, appear
respectively, between vertices vi and vj, respectively. On the
other hand, molecules containing aromatic rings with more
than one canonical structure are represented like a
pseudograph. It happens for substituted aromatic compounds
such as pyridine, naphthalene, quinoline, and so on, where
the presence of pi ( ) electrons is accounted by means of
loops in each atom of the aromatic ring. Conversely,
aromatic rings having only one canonical structure, such as
furan, thiophene and pyrrole are represented like a
multigraph.

As can be seen, M
k
, are graph–theoretic

electronic–structure models, like an EHT MO model”. The
M

1 
matrix considers all valence-bond electrons ( - and -

networks) in one step and their power (k = 0, 1, 2, 3…) can
be considered as an interacting–electron chemical–network
model in k step. This model can be seen as an intermediate
between the quantitative quantum-mechanical Schrödinger
equation and classical chemical bonding ideas [45].

The present approach is based on a simple model for the
intramolecular movement of all outer-shell electrons. Let us
consider a hypothetical situation in which a set of atoms is
set free in space at an arbitrary initial time (t0). At this time,
the electrons are distributed around the atomic nuclei.
Alternatively, these electrons can be distributed around cores
in discrete intervals of time tk. In this sense, the electron in
an arbitrary atom i that can move (step-by-step) to other
atoms at different discrete time periods tk  (k = 0, 1, 2, 3,…)
throughout the chemical-bonding network.

On the other hand, the S
k
(G) can be obtained directly

from M
k
. Here, S

k
 = [

k
sij], is a squared table of order n (n =

number of atoms) and the elements 
k
sij are defined as follows

[38,40].

k sij =
kmij

kSUMi

=

kmij

k
i

(2)

where, 
k
mij are the elements of the k

th
 power of M  and the

SUM of the ith row of M
k
 is named the k-order vertex degree

of atom i, 
k

i. Note that the matrix S
k
 in Eq. 2 has the

property that the sum of the elements in each row is 1. An
nxn matrix with non-negative entries having this property is
called a “stochastic matrix” [46]. The k

th 
sij elements are the

transition probabilities with the electrons moving from atom
i to j in the discrete time periods tk. Note that k

th 
element sij

takes into consideration the molecular topology in the k
th

step throughout the chemical-bonding ( - and -) network.
The 

2
sij values can distinguish between hybrid states of

atoms in bonds. For instance, the self-return probability of
second order (

2
sii) [they are the probabilities with which

electron return to the original atoms at t2], varies regularly
according to the different hybrid states of atom i in the
molecule, e.g. an electron will have a higher probability of
returning to the sp C atom than to the sp2 (or sp3) C atom in
t2 [p(Csp)>p(Csp2)>p(Csp2arom)>p(Csp3)]. This is a logical result
if the electronegativity of these hybrid states is taken into
account.

The k
th 

non-stochastic [28,30,35,38,40] and stochastic
[38,40] linear indices for atom i in a molecule, fk(xi) and
s
fk(xi), are computed from these k

th
 non-stochastic and

stochastic graph–theoretic electronic-density matrices, M
k

and S
k
 as shown in Eqs. 3 and 4, respectively:

fk (xi ) =
kmij X j

j=1

n

(3)

s fk (xi ) =
k sij X j

j=1

n

(4)

where n is the number of atoms in the molecule, and X1,…,Xn

are the coordinates or components of the “molecular vector”
(X) in a canonical basis set in 

n
. The components of the

molecular vector are numeric values, which can be
considered as weights (atom-labels) that characterize each
atom in the molecule. Different weighing schemes can be
used with this purpose, such as: 1) the atomic masses, 2) the
van der Waals volumes, 3) the atomic electronegativities in
the Pauling scale, (4) the atomic polarizabilities, and so on
[47]. In this work, the Pauling electronegativities were
selected as atom weights because they take into account the
electronic features of each atom in the molecule, and permit
adequately differentiating among atoms [48].

The atomic linear indices are defined as a linear
transformation fk(xi) on a molecular vector space 

n
. The

defined equations (3) and (4) for fk(xi) and 
s
fk(xi) may be

written as the single matrix equation:

fk(xi) = [X’]
k
 = M

k
[X] (5)

s
fk(xi) = [

s
X’]

k
 = S

k
[X] (6)

where [X] is a column vector (an nx1 matrix) of the
coordinates of X in the canonical basis of 

n
.
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This approach is rather similar to the L C A O - M O
(L inear C ombination of A tomic Orbitals-Molecular
Orbitals) method. Really, our approach (for k = 1) is a quite
similar approximation to the EHT, due to the formalism each
MO i is composed of n valence AOs of atoms in a molecule
[49].

Total (whole-molecule) linear indices are linear
functionals (or linear forms) [46] on 

n
. The mathematical

definition of these molecular descriptors (non-stochastic and
stochastic) is the following:

fk (x) = fk
i=1

n

(xi ) (7)

s fk (x) =
s fk

i=1

n

(xi ) (8)

where n is the number of atoms and fk(xi) and 
s
fk(xi) are the

non-stochastic and stochastic atomic linear indices obtained
by Eqs. 3 and 4, respectively. Then these linear forms, fk(x)
and 

s
fk(x), can be written in matrix form;

fk(x) = [u]
t 
[X’]

k
 (9)

s
fk(x) = [u]

t 
[

s
X’]

k
 (10)

for each molecular vector X
n
. [u]

t
 is an n -dimensional

unitary row vector (a 1xn matrix). As can be seen, the k
th

total linear index is calculated by summing the local (atomic)
linear indices of all atoms in the molecule.

In addition to atomic linear indices computed for each
atom in the molecule, a local-fragment (atom-type)
formalism can be developed. The k

th
 atom-type linear index

is calculated by summing the k
th

 atom linear indices of all
atoms of the same atom type in the molecule
[28,30,35,38,40]. Consequently, if a molecule is partitioned
into Z molecular fragments, the total linear indices can be
partitioned into Z local linear indices fkL(x) [or 

s
fkL(x)], L = 1,

…, Z. The total linear indices of order k can be expressed as
the sum of the local linear indices of the Z fragments of the
same order:

fk (x) = fkL
L=1

Z

(x) (11)

s fk (x) =
s fkL

L=1

Z

(x) (12)

In the atom-type linear indices formalism, each atom in
the molecule is classified into an atom-type (fragment), such
as heteroatoms (O, N and S), H-bonding to heteroatoms,
halogens atoms, aliphatic carbon chain, aromatic atoms
(aromatic rings), and so on. For all data sets, including those
with a common molecular scaffold as well as those with very
diverse structure, the k

th
 fragment (atom-type) non-stochastic

and stochastic linear indices provide much useful
information. The atom-type descriptors combine three
important aspects of structure information: 1) electron
accessibility for the atoms of the same type, 2)
presence/absence of the atom type, and 3) count of the atoms
in the atom type.

2.2. Computational Strategies

The main steps for the application of present method in
QSAR/QSPR and drug design can be briefly summarized in
the following set of steps: 1) Draw the molecular
pseudographs for each molecule of the data set, using the
software drawing mode. This procedure is performed by a
selection of the active atomic symbol belonging to the
different groups in the periodic table of the elements, 2) Use
appropriate weights in order to differentiate the molecular
atoms. In this study, we used the Pauling electronegativity
[58] as atomic property for each kind of atom, 3) Compute
the total and local (atomic and atom-type) non-stochastic and
stochastic linear indices. It can be carried out in the software
calculation mode, where you can select the atomic properties
and the descriptor family previously to calculate the
molecular indices. This software generates a table in which
the rows correspond to the compounds, and columns
correspond to the total and local linear indices or other
molecular descriptors family implemented in this program,
4) Find a QSPR/QSAR equation by using several
multivariate analytical techniques, such as multilinear
regression analysis (MRA), neural networks (NN), linear
discrimination analysis (LDA), and so on. That is to say, we
can find a quantitative relation between an activity A and the
linear indices having, for instance, the following appearance,
A = a0f0(x)  + a1f1(x) + a2f2(x) +….+ akfk(x) + c, where A is
the measured activity, fk(x) are the k

th
 total linear indices, and

the ak’s are the coefficients obtained by the linear regression
analysis, 5) Test the robustness and predictive power of the
QSPR/QSAR equation by using internal [cross-validation]
and external (using a test set and an external predicting set)
validation techniques, and 6) Apply the obtained LDA-based
QSAR models as cheminformatic tool for identifying leads
through ligand-based virtual screening-drug discovery
process.

The following atom-type descriptors were calculated in
this work for describing the antitrichomonal activity of some
compounds via LDA models:

i )  fkL(xE) and fkL
H
(xE) are the k

th
 local (atom-type =

heteroatoms: S, N, O) linear indices not considering and

considering H-atoms in the molecule, correspondingly.

These local descriptors are putative molecular charge,
dipole moment, and H-bonding acceptors.

ii) f kL
H
(xE-H) are the k

th
 local (atom-type = H-atoms

bonding to heteroatoms: S, N, O) linear indices

considering H-atoms in the molecule. These local

descriptors are putative H-bonding donors (hydrogen
bonding capacity), lipophilicity, and so on.

iii) The k
th

 stochastic atom-type [
s
fk(xE), 

s
fk

H
(xE) and

s
fk

H
(xE-H)] linear indices were also computed.

2.3. Database Selection

A data set of 111 organic-chemicals having a great
structural variability was collected from the literature for the
present study [50,51]. The data set of active compounds (49
chemicals used as trichomonacidal in clinic) was chosen
considering a representation of most of the different
structural patterns and action modes for the case of
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compounds with antitrichomonal activity. Figure 1 shows a
representative sample of such active compounds.

In addition, the set of inactive compounds was obtained
by selecting at random 62 drugs with different

Fig. (1). Random sample of the molecular families of trichomonacidal agents studied here.
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pharmacological uses. These drugs include, for instance,
antibiotic, antivirals, sedative/hypnotics, diuretics,
anticonvulsants, hemostatics,  oral  hypoglycemics,
antihypertensives, anthelminthics, anticancer, antifungal, etc;
guaranteeing also a great structural variability. However, the
declaration of these compounds as “inactive”
antitrichomonal per se does not guarantee that there do not
exist trichomonacidal side-effects for some of those organic-
chemical drugs that have been left undetected so far. This
problem can be reflected in the results of classification for
the series of inactive chemicals.

Later, two kinds of cluster analyses (CA) were performed
for active and inactive series of compounds, in order to split
(design) the dataset (111 organic-chemicals) into training
and predicting series in a “rational” way [52,53].

2.4. Data Analysis and Processing

2.4.1. Clustering

Cluster analysis encompasses a number of different
classification algorithms and it permits to organize the
observed data into meaningful structures. Conceptually, the
approach used by CA in order to address this problem can be
described well by the saying “birds of a feather flock
together” [54]. Many CA algorithms have been invented and
they belong to two categories: hierarchical clustering and
partitional (non-hierarchical) clustering. Hierarchical
clustering rearranges objects in a tree-structure (joining
clustering) and these methods are implemented in
agglomerative (bottom-up) or divisive (top-down) procedure.
On the other hand, the partitional clustering assumes that the
objects have non-hierarchical characters [52-54].

Most popular partitional cluster algorithms are k-mean
cluster algorithms (k-MCA) and Jarvis-Patrick (also known
as k-nearest neighbor cluster algorithm; k - N N C A )
algorithms. K-mean clustering algorithms use an interchange
(or switching) method to divide n data points into k groups
(clusters) so that the sum of distances/dissimilarities among
the objects within the same cluster is minimized. The k-mean
approach requires that k (the number of clusters) is known
before clustering. The Jarvis-Patrick method requires the
user specifies the number of nearest neighbors, and the
number of neighbors in common to merge to objects. Jarvis-
Patrick is a deterministic algorithm; it does not require
iterations for computations [52-54].

In order to design training and test series and to
demonstrate the structural diversity of the present database,
we carried out the two kinds of cluster analyses (k-MCA and
k-NNCA) for both active and inactive series of compounds
[52-54]. The statistical software package STATISTICA [55]
was used to develop these CAs.

In this study, we used “average linkage” metric as
method to merge objects into clusters. The average linkage
distance between two clusters is defined as the average
distance (squared Euclidean) between pairs of objects, one in
each cluster. Average linkage tends to join clusters with
small variances and, is biased toward producing clusters with
roughly the same variance.

Takeing into consideration that the number of
combinations of partitioning N objects into K groups is an

astronomical high figure, we forced the STATISTICA
program to abort after of 10 iterations in order to produce
result in a feasible period of time. The number of members
in each cluster and the standard deviation of the variables in
the cluster (kept as low as possible) were taken into account,
to have an acceptable statistical quality of data partition in
clusters. The values of the standard deviation (SS) between
and within clusters, of the respective Fisher ratio and their p-
level of significance were also examined [52-54]. Finally,
before carrying out the cluster processes, all the variables
were standardized. In standardization, all values of selected
variables (molecular descriptors) were replaced by
standardized values, which are computed as follows: Std.
score = (raw score - mean)/Std. deviation.

2.4.2. Linear Discriminant Analysis

The discriminant functions were obtained by using the
Linear Discriminant Analysis (LDA) [56] as implemented in
the STATISTICA [55]. The default parameters of this
program were used in the development of the model.
Forward stepwise was fixed as the strategy for variable
selection. The principle of parsimony (Occam's razor) was
taken into account as they strategy for model selection. In its
original form, the Occam’s razor states that »Numquam
ponenda est pluritas sin necesitate«, which can be translated
as »Entities should not be multiplied beyond necessity« [57].
In this case, simplicity is loosely equated with the number of
parameters in the model. If we understand the predictive
error to be the error rate for unseen examples, the Occam’s
razor can be stated for the selection of QSAR/QSPR models
as (“QSAR/QSPR Occam’s Razor”): Given two
QSAR/QSPR models with the same predictive error, the
most simple one should be preferred because simplicity is
desirable in itself [57]. In this connection, we select the
model with higher statistical signification but having as few
parameters (ak) as possible.

The quality of the models were determined by examining
Wilks’  parameter (U -statistic), squared Mahalanobis
distance (D

2
), Fisher ratio (F) and the corresponding p-level

(p(F)) as well as the percentage of good classification in the
training and test sets [56]. Models with a proportion between
the number of cases and variables in the equation lower than
5 were rejected.

The Wilks’  for the overall discrimination can take

values in the range of 0 (perfect discrimination) to 1 (no
discrimination). The D

2
 statistics indicates the separation of

the respective groups, showing whether the model possesses
an appropriate discriminatory power for differentiating

between the two respective groups.

By using the models, one compound can then be
classified as either active, if P% > 0, being P% =
[P(Active) - P(Inactive)]x100 or inactive otherwise.
P(Active) and P(Inactive) are the probabilities with which

the equations classify a compound as active and inactive,
respectively.

The statistical robustness and predictive power of the
obtained model were assessed using a prediction (test) set

[58]. Also a leave-group-out (LGO) cross-validation strategy
was carried out.

 
In this case, 10% of the data set was used as
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group size, i.e. groups including 10% of the training data set

were left out and predicted for the model based on the
remaining 90%. This process was carried out 10 times on 10
unique subsets. In this way, every observation was predicted
once (in its group of left-out observations). The overall mean

for this process (10% full leave-out cross-validation) was
used as a good indication of robustness, stability and
predictive powers of the obtained models [58].

Finally, the calculation of percentages of global good
classification (accuracy), sensibility, specificity (also known
as ‘hit rate’), false positive rate (also known as ‘false alarm
rate’) and Matthews correlation coefficient (C ) in the
training and test sets permitted the assessment of the model
[59].

The interrelation among the molecular descriptors makes
difficult the interpretation of the QSAR model. To overcome
this difficulty, an approach based on the orthogonalization of
the descriptors has been introduced in the literature [60-66].
The main philosophy of this approach is to avoid the
exclusion of descriptors on the basis of its collinearity with
other variables included in the model. In addition, it is well
known that the interrelatedness among the different
descriptors can result in highly unstable regression
coefficients, which makes it impossible to know the relative
importance of an index and underestimates the utility of the
regression coefficient in a model [60-66]. However, in some
cases, strongly interrelated descriptors can enhance the
quality of a model because the small fraction of a descriptor
which is not reproduced by its strongly interrelated pair can
provide positive contributions to the modeling. On the other
hand, the coefficient of the QSAR model based on
orthogonal descriptors is stable to the inclusion of novel
descriptors, which permit to interpret the regression
coefficients and to evaluate the role of individual fingerprints
in the QSAR model.

In this study, the Randi_ method of orthogonalization
was used [60-66]. This method has been described in details
in several publications. Thus, we will give only a general
overview here. As a first step, an appropriate order of
orthogonalization was considered following the order with
which the variables were selected in the forward stepwise
search procedure of the statistical analysis. The first variable
(V1) is taken as the first orthogonal descriptor 

1
O(V1), and

the second one (V2) is orthogonalized with respect to it
[

2
O(V2)]. The residual of its correlation with 

1
O(V1), is that

part of the descriptors V2 not reproduced by 
1
O(V1).

Similarly, from the regression of V3 versus 
1
O(V1), the

residual is the part of  V3  that is not reproduced by 
1
O(V1)

and it is labeled 
1
O(V3). The orthogonal descriptor 

3
O(V3) is

obtained by repeating this process in order to also make it
orthogonal to 

2
O(V2). The process is repeated until all

variables are completely orthogonalized, and the orthogonal
variables are then used to obtain the new model.

2.5. Determination of In Vitro Trichomonacidal Activity

The biological activity was assayed on Trichomonas
vaginalis JH31A #4 No. ref. 30326 (ATCC, Maryland, USA)
in modified diamond medium supplemented with equine
serum and grown at 37 ˚C (5% CO2). The compounds were
added to the cultures at several concentrations (100, 10, and

1 _g/ml) after 6 h of the seeding (0 h). Viable protozoa were
assessed at 24 and 48 h after incubation at 37 ˚C by using the
Neubauer chamber. Metronidazole (Sigma-Aldrich SA,
Spain) was used as reference drug at concentrations of 2, 1,
0,5 _g/ml. Cytocidal and cytostatic activities were
determined by calculation of percentages of cytocidal (%C)
and cytostatic activities (%CA) in relation with controls as
previously reported [67-71].

3. RESULTS AND DISCUSSION

3.1. Construction of Training and Test Sets Using
Hierarchical and Non- Hierarchical Cluster Analyses

It is well known that the quality of a classification model

is highly dependent on the quality of the selected data set.

The most critical aspect for constructing the training set is to
warrant enough molecular diversity on it. Taking this into

account, we selected a data set of 111 organic chemicals

having a great structural variability. In order to demonstrate
the structural diversity of this data set, we performed a

hierarchical cluster analysis of the active and inactive series

[52-53]. The hierarchical clustering approach finds a
hierarchy of objects represented by a number of descriptors.

The two dendrograms given in Figure 2 and 3, using the

Euclidean distance (X-axis) and the complete linkage (Y-
axis), illustrate the results of the k-NNCA developed in

active and inactive sets, respectively. As can be seen in both

dendrograms, there is a great number of different subsets,
which prove the molecular variability of the selected

chemicals in these databases.

Also this procedure permits to select compounds for the

training and test sets in a representative way, in all levels of

the linking distance. In addition, and in order to split also the
whole group into two data sets (training and predicting

ones), two k-MCA [52-53] were performed for active and

inactive compounds, respectively.

The main idea of this procedure consists in making a

partition of either active or inactive series of chemicals in

several statistically representative classes of compounds.
This procedure ensures that any chemical class (as

determined by the clusters) will be represented in both

compounds’ series. This “rational” design of training and
predicting series allowed us to design both sets that are

representative of the whole “experimental universe”.

First, we carried out a k -MCA algorithm with active

compounds and afterwards with inactive ones. The first k-

MCA (I) divided trichomonacidals into 10 clusters. On the
other hand, the inactive compounds were partitioned into 12

clusters (k-MCA II). Tables 1 and 2 depict the members of

each cluster as active (k-MCA I) or inactive (k-MCA II)
groups, respectively.

Afterwards the selection of the training and prediction

sets was performed by taking, in a random way, compounds
belonging to each cluster. From these 111 chemicals, 90

were chosen at random to form the training set, being 39 of

them actives and 51 inactive ones. The great structural
variability of the selected training data set makes possible

the discovery of lead compounds, not only with determined

mechanisms of antitrichomonal activity, but also with novel
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modes of action. This will be well-illustrated in this paper in
a virtual experiment for lead compounds generation.

The remaining subseries composed of 10
trichomonacidals and 11 compounds with different
biological properties were prepared as test sets for the
external cross-validation of the models (21 chemicals).

These compounds were never used in the development of the
classification models. Figure 4 graphically illustrates the
above-described procedure where two independent cluster
analyses (one for active and the other for inactive
compounds) were performed to select a representative
sample for the training and test sets.

Fig. (2). A dendrogram illustrating the results of the hierarchical k-NNCA of the set of active compounds used in the training and prediction

set of the present work.

Fig. (3). A dendrogram illustrating the results of the hierarchical k-NNCA of the set of inactive compounds used in the training and
prediction set of the present work.
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Table 1. Result of the k-MCA I.

Active

compounds
Cluster Dist.

Active

compounds
Cluster Dist.

Active

compounds
Cluster Dist.

Lauroguadine 1 0.20 Nimorazole 5 0.07 Mepartricin A 7 0.11

Azomycin 1 0.20 Ornidazole 5 0.09 Mepartircin B 7 0.11

Acertarsone 2 0.30 Benzoylmetroni-

dazole

5 0.05 Metronidazole 8 0.02

Glycobiarzole 2 0.32 Misonidazole 5 0.09 Nifuroxime 8 0.11

Glycarsiamidon 2 0.18 Fexinidazole 5 0.03 Secnidazole 8 0.03

Thiacetarsamide 2 0.24 Pirinidazole 5 0.08 Chlomizol 8 0.05

Virustomycin A 3 0.41 Nimorazole 5 0.07 Isometronidazole 8 0.02

Pentamycin 3 0.41 Carnidazole 6 0.12 Ternidazole 8 0.02

Aminitrozole 4 0.08 Propenidazole 6 0.11 Gynotabs 8 0.05

2 -Amino -5 -nitrotiazole 4 0.21 Furazolidone 6 0.11 Moxnidazole hidrocloride 9 0.20

Trichomonacid 4 0.15 Nifuratel 6 0.14 Satranidazole 9 0.20

Luthenurine 4 0.19 Mertronidazole

phosphate

6 0.25 Anisomycin 10 0.23

Abunidazole 4 0.07 Bamnidazole 6 0.15 Cariolin 10 0.18

Imoctetrazoline 4 0.13 Piperanitrozole 6 0.11 Clioquinol 10 0.12

Forminitrazole 4 0.10 Metronidazole

hydrogen succinate

6 0.13 Clotrimazol 10 0.27

Acinitrazole 4 0.08 Tivanidazole 6 0.14 Diyodohidroxi-quinoline 10 0.13

Tolamizol 4 0.09 Azanidazole 6 0.35

Table 2. Result of the k-MCA II.

Inactive

compounds
Cluster Dist.

Inactive

compounds
Cluster Dist.

Inactive

compounds
Cluster Dist.

Norantoin 1 0.16 Petidina 5 0.05 Basedol 9 0.13

Rolipram 1 0.09 Tenalidine 5 0.09 Didym levulinate 9 0.17

N-hidroxymethyl-N-

methylurea

1 0.03 Bamipine 5 0.19 Cyclopramine
9 0.11

Mecysteine 1 0.10 Nonaferone 5 0.14 Colestipol 9 0.14

Cirazoline 1 0.13 Acetylcholine 5 0.05 4-Chlorobenzoic acid 9 0.11

Zoxazolamine 1 0.09 Amitraz 5 0.11 Acetanilide 9 0.15

Thiacetazone 2 0.23 Diponium Bromide 5 0.05 Proclonol 9 0.15

Orotonsan Fe 2 0.20 Methenamine 6 0.11 Dopamine 10 0.21

Naftazone 2 0.16 Carbimazole 6 0.07 Bufeniode 10 0.15

Ag 307 2 0.12 Ethydine 6 0.12 Carazolol 10 0.21

Eticoumarolum 2 0.16 Chloral betaine 7 0.13 Amantadine 11 0.25

Guanazole 2 0.17 Frigen 113 7 0.11 Propamin “soviet” 11 0.09

Lysergide 2 0.21 Perchloroethane 7 0.03 Vinyl ether 11 0.12

Alibendol 2 0.19 Bisoxatin acetate 8 0.22 Trimethylsulfonium hydroxide 11 0.13

Phenoltetrachloro-

phthalein

3 0.15 Besunide 8 0.35 Tetramin
11 0.13

Methocarbamol 3 0.15 Celiprolol 8 0.20 KC-8973 11 0.15

Barbismetylii iodidum 4 0.24 Erysimin 8 0.26 Picosulfate 12 0.80

Pancuronium bromide 4 0.20 Peruvoside 8 0.32 Acetazolamide 12 0.58

Magnesii metioglicas 4 0.27 Asame 8 0.42 Glicondamide 12 0.48

Pyrantel tartrate 5 0.03 Carbavin 9 0.11 Streptomycin 12 1.45

Fentanilo 5 0.04 RMI 11894 9 0.10
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Fig. (4). General algorithm used to design training and test sets throughout k-MCA.

Table 3. Main results of the k-MCAs, for antitrichomonal and non-antitrichomonal drug-like compounds.

Analysis of Variance

Variables Between SS
a

Within SS
b Fisher

ratio (F)
p-level

c

Antitrichomonal  agents clusters (k-MCA I)

f0L(xE) 39.74 1.18 145.46 0.00

f1L(xE) 18.67 1.64 49.27 0.00

f2L
H(xE) 21.72 1.44 65.20 0.00

f8L(xE-H) 37.88 1.83 89.42 0.00

Non-Antitrichomonal  agents clusters (k-MCA II)

f0L(xE) 30.51 6.36 21.79 0.00

f1L(xE) 30.22 1.90 71.96 0.00

f2L
H(xE) 37.77 2.26 75.79 0.00

f8L(xE-H) 23.30 9.38 11.28 0.00

aVariability between groups.  bVariability within groups.  cLevel of significance.

The k
th

 non-stochastic atom-type linear indices were
used, with all variables showing p-levels <0.05 for the Fisher
test. The results are depicted in Table 3.

From the CAs, it can be concluded that the structural
diversity of several up-to-date known antitrichomonal
compounds (as codified by T O M O C O M D - C A R D D
descriptors) may be described at least by 10 statistically
homogeneous clusters of chemicals.

3.2. Development and Validation of the Discriminant
Functions

Although the number of existing statistical methods to
get classification functions is relatively extensive, we select
linear discriminant analysis (LDA) given the simplicity of
the method [56]. The use of LDA in rational drug design has
been extensively reported by different authors [23,29-31,33-
41]. The best discrimination functions obtained using non-
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stochastic and stochastic linear indices for the training set are
given below:

where N is the number of compounds,  is Wilks’ statistics,
D

2 
is the squares of Mahalanobis distances, F is the Fisher

ratio and p is the significance level.

Model (13) classifies correctly 92.31% of active and
98.04% of inactive compounds in the training set for a global
good classification (accuracy) of 95.56%. Model (14)
correctly classifies 91.11% of the compounds in training set.
Specifically, the model correctly classifies 33 out of 39
(84.62%) trichomonacidal compounds and 49 out of 51
(96.08%) inactive chemicals in the training series. On the

other hand, Eqs. 13 and 14 show a 90.48% (19/21) and
85.71% (18/3) global predictability in the prediction series,

respectively. In Table 4 we give the names of all compounds
in the training and test active set together with their posterior
probabilities calculated from the Mahalanobis distance using
both equations. The same information of all compounds in
the training and test inactive set appears in Table 5. Table 6
summarizes the results of the classifications for both models
in the training and test sets. These results validate the models
for use in the ligand-based virtual screening taking into
consideration that 85.0% is considered as an acceptable
threshold limit for this kind of analysis [72].

Table 4. Names and classification of active compounds in training and test series according to the two TOMOCOMD-CARDD models

developed in this work.

name P%
a Score

b
P%

c Score
d

name P%
a Score

b
P%

c Score
d

Active training set

Anisomycin -87.34 1.07 -96.01 1.01 Abunidazole 99.91 -2.41 99.59 -2.46

Virustomycin A 24.23 0.00 95.00 -1.59 Imoctetrazoline 99.67 -1.98 87.51 -1.27

Azanidazole 99.97 -2.81 99.88 -2.89 Forminitrazole 99.00 -1.60 92.60 -1.46

Carnidazole 99.55 -1.88 95.88 -1.66 Chlomizole 99.67 -1.97 90.28 -1.36

Propenidazole 98.84 -1.55 99.01 -2.16 Acinitrazole 98.79 -1.54 92.97 -1.47

Lauroguadine -93.35 1.30 -81.49 0.45 Moxnidazole 99.99 -3.15 99.83 -2.78

Mepartricin A 99.93 -2.50 96.22 -1.69 Isometronidazole 99.39 -1.77 97.97 -1.91

Metronidazole 99.39 -1.77 97.51 -1.84 Mertronidazole phosphate 100.00 -4.88 99.75 -2.64

Nifuratel 99.97 -2.84 99.79 -2.69 Benzoylmetronidazole 98.64 -1.50 99.27 -2.26

Nifuroxime 100.00 -3.49 99.80 -2.71 Bamnidazole 93.58 -0.97 24.62 -0.51

Nimorazole 99.90 -2.39 97.40 -1.82 Glycarsiamidon 68.52 -0.39 55.98 -0.77

Secnidazole 99.38 -1.76 98.11 -1.93 Fexinidazole 99.87 -2.29 99.61 -2.48

Cariolin -66.78 0.71 -82.65 0.48 Piperanitrozole 99.35 -1.75 98.25 -1.96

2-Amino-5-nitro-tiazole 99.34 -1.74 92.70 -1.46 Gynotabs 99.52 -1.85 99.39 -2.33

Glycobiarzole 99.99 -3.36 84.19 -1.18 Pirinidazole 99.97 -2.76 99.83 -2.76

Clioquinol 19.75 0.03 -61.41 0.16 Metronidazole hydrogen

succinate
97.23 -1.26 91.69 -1.41

Diyodohidroxiquinoline 15.10 0.07 -52.51 0.07 Tolamizole 99.16 -1.66 98.69 -2.06

Ornidazole 99.99 -3.22 99.80 -2.71 Thiacetarsamide 15.35 0.07 -40.28 -0.04

Trichomonacid 100.00 -3.68 99.99 -3.78 Tivanidazole 99.94 -2.57 99.98 -3.52

Luthenurine 8.57 0.11 55.77 -0.77

Active test set

Acertarsone 80.75 -0.58 56.94 -0.78 Pentamycin 98.52 -1.47 95.73 -1.65

Furazolidone 99.91 -2.43 99.51 -2.40 Azomycin 99.93 -2.48 96.83 -1.76

Mepartircin B 99.93 -2.51 95.43 -1.63 Ternidazole 99.37 -1.76 98.01 -1.92

Aminitrozole 98.79 -1.54 92.97 -1.47 Misonidazole 99.69 -2.00 96.76 -1.75

Clotrimazole -94.25 1.35 -92.61 0.79 Satranidazole 93.01 -0.94 97.32 -1.81

a,cAntitrichomonal activity predicted by Eq 13 and 14, respectively: P% = [P(Active) - P(Inactive)]x100. b,dCanonical scores obtained from canonical analysis,

Eq. 15 and 16, correspondingly.

Class =  1.7422 +28.0505f1L(xE) -31.1775f2L
H
(xE) +6.5594f0L(xE) +2.1860f8L

H
(xE-H)  (13)

N = 90      = 0.308        D
2 

= 8.91     F(4, 85) = 47.558          p<0.0001

Class = -7.783 +5.108
s
f1L

H
(xE) -4.406

s
f14L(xE) +2.9609

s
f1L

H
(xE-H) -3.60839

s
f4L

H
(xE-H) (14)

N = 90       = 0.32      D
2 

= 8.43      F(4, 85) = 44,999      p<0.0001
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Table 5. Names and classification of inactive compounds in training and test series according to the two TOMOCOMD-CARDD

models developed in this work.

name P%
a Score

b
P%

c Score
d

name P%
a Score

b
P%

c Score
d

Inactive training set

Amantadine -97.27 1.60 -99.65 1.85 Nonaferone -84.66 1.00 -95.58 0.97

Thiacetazone -43.43 0.48 -37.98 -0.06 Rolipram -91.31 1.20 -94.58 0.90

Chloral betaine -83.12 0.97 -99.90 2.28 N-hidroxymethyl -N-methylurea -96.86 1.56 -99.73 1.94

Carbavin -99.77 2.43 -99.74 1.95 4-Chlorobenzoic acid -96.66 1.53 -95.49 0.97

Norantoin -99.54 2.20 -99.54 1.76 Acetanilide -97.76 1.67 -99.44 1.69

Orotonsan Fe -99.66 2.30 -99.83 2.11 Guanazole -87.17 1.07 -99.94 2.47

Picosulfate -81.32 0.93 -1.45 -0.32 Tetramin -92.44 1.25 -98.53 1.36

Naftazone -91.67 1.22 -91.84 0.75 Mecysteine -96.60 1.53 -100.00 3.91

Besunide -75.73 0.83 36.06 -0.59 Cirazoline -94.13 1.34 -98.83 1.43

Acetazolamide -59.08 0.62 -89.84 0.68 Methocarbamol -97.25 1.60 -99.91 2.33

Propamin “soviet” -97.43 1.62 -99.85 2.15 Lysergide -74.51 0.81 -94.29 0.88

RMI 11894 -97.74 1.67 -99.76 1.98 Dopamine -87.09 1.06 -96.24 1.03

Ag 307 -98.18 1.74 -89.99 0.68 Bufeniode -4.42 0.20 -15.90 -0.22

Barbismetylii iodidum -99.20 2.02 -99.76 1.99 Celiprolol -88.84 1.12 -45.77 0.01

Pancuronium bromide -96.72 1.54 -96.60 1.06 Erysimin -50.18 0.54 31.11 -0.55

Vinyl ether -96.07 1.48 -99.86 2.18 Peruvoside -29.66 0.37 -9.42 -0.27

Basedol -98.06 1.72 -99.17 1.55 Amitraz -98.57 1.82 -94.92 0.92

Carbimazole -99.28 2.05 -99.51 1.74 Proclonol -59.31 0.63 -86.92 0.58

Didym levulinate -99.15 2.00 -99.91 2.32 Asame -93.04 1.28 -99.77 2.00

Perclhoroethane -14.85 0.27 -99.58 1.79 KC-8973 -93.73 1.32 -98.80 1.43

Pyrantel tartrate -94.51 1.36 -96.81 1.09 Ethydine -98.09 1.72 -99.52 1.74

Fentanil -97.43 1.62 -96.47 1.05 Magnesii metioglicas -95.55 1.44 -98.65 1.39

Petidine -96.37 1.51 -96.73 1.08 Alibendol -77.09 0.85 -79.27 0.41

Tenalidine tartrate -78.66 0.88 -92.60 0.79 Diponium Bromide -97.36 1.61 -99.63 1.83

Bamipine -91.51 1.21 -98.23 1.29 Streptomycin 75.15 -0.49 -59.47 0.14

Colestipol -97.51 1.63 -99.54 1.76

Inactive test set

Methenamine -90.02 1.16 -99.98 2.85 Cyclopramine -85.17 1.01 -98.68 1.39

Phenoltetrachloro-

phthalein

56.34 -0.26 91.20 -1.39 Trimetilsulfonium hidroxide
-92.60 1.26 -99.56 1.78

Bisoxatin acetate -97.59 1.65 -24.29 -0.16 Zoxazolamine -97.54 1.64 -96.62 1.07

Glicondamide -84.81 1.01 1.38 -0.34 Acetylcholine -96.29 1.50 -99.95 2.53

Frigen 113 -62.80 0.66 -100.00 3.90 Carazolol -19.93 0.30 -86.94 0.58

Eticoumarolum -93.24 1.29 -63.93 0.19

a,cAntitrichomonal  activity predicted by Eq 13 and 14, respectively: P% = [P(Active) - P(Inactive)]x100. b,dCanonical scores obtained from canonical

analysis, Eq. 15 and 16, correspondingly.

Table 6. Prediction performances for two LDA-based QSAR models (using non-stochastic and stochastic atom-type linear indices) in

the training and test sets.

Matthews Corr.

Coefficient (C)

Accuracy

‘QTotal’ (%)

Sensitivity

‘hit rate’ (%)

Specificity

(%)

False positive rate

‘false alarm rate’ (%)

Non-Stochastic Atom-type Linear Indices [Eq. (13)]

Training set 0.91 95.56 92.31 97.3 2.0

Test set 0.81 90.48 90.00 81.82 10.0

Non-Stochastic Atom-type Linear Indices [Eq. (14)]

Training set 0.82 91.11 84.62 94.29 3.92

Test set 0.72 85.71 90.00 81.82 18.18
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Table 7. Results of the 10-fold full cross-validation procedure.

Groups % Class
a

D
2

F % Class
b

% Class
a

D
2

F % Class
b

Eq. 13 (Non-Stochastic Atom-based Linear indices) Eq. 14 (Stochastic Atom-based Linear indices)

1 93.67 0.28 10.05 46.80 81.81 91.36 0.30 8.93 42.72 88.88

2 94.94 0.28 9.83 45.76 90.90 92.59 0.28 9.84 47.04 77.77

3 96.20 0.31 8.52 39.66 90.90 90.12 0.34 7.42 35.49 100.00

4 94.94 0.28 10.20 47.01 81.81 92.59 0.30 9.12 43.60 77.77

5 92.40 0.34 7.69 35.80 100.00 91.35 0.31 8.56 40.92 88.88

6 93.67 0.31 8.46 39.38 100.00 90.12 0.33 7.73 36.96 100.00

7 93.67 0.30 8.85 41.20 81.81 90.12 0.33 7.89 37.75 100.00

8 93.63 0.31 8.41 39.42 90.90 90.12 0.31 8.78 42.00 88.88

9 92.40 0.34 7.69 35.80 100.00 88.88 0.31 8.68 41.52 88.88

10 94.94 0.28 9.83 45.76 90.90 91.46 0.32 8.27 39.18 88.88

Mean 94.05 0.30 8.95 41.66 90.90 90.87 0.31 8.52 40.72 89.99

SD 1.20 0.02 0.96 4.37 7.43 1.20 0.02 0.72 3.45 8.20

a,b Global good classification from both models in training (90% of the data) and test (10% of the data) sets, respectively.

A more serious analysis was carried out by calculating
most of the parameters commonly used in medical statistics
(accuracy, sensitivity, specificity and false positive rate) and
the Matthews correlation coefficient (C). Table 6 also lists
these parameters for both obtained models [59]. While the
sensitivity is the probability of correctly predicting a positive
example, the specificity is the probability that a positive
prediction is correct. On the other hand, C quantifies the
strength of the linear relation between the molecular

descriptors and the classifications, and it may often provide a
much more balanced evaluation of the prediction than, for
instance, the percentages [59]. The obtained models, Eqs. 13
and 14, showed a high C of 0.91 (0.81) and 0.82 (0.72) in
training (test) sets, correspondingly.

Although, the most important criterion for the quality of
the discriminant model is based on the statistics for the
external prediction set, for a more exhaustive testing of the
predictive power of the models, we carried out a leave-10-
fold full-out (LGO) cross-validation procedure. For each
group of observations left out (10% of the whole data set, 9
compounds), a model was developed from the remaining
90% of the data (81 compounds). This process was carried
out ten times on ten unique subsets. The statistical results are
depicted in Table 7 . The overall mean of the correct
classification in training (test) set for this process for Eq. 13
and Eq. 14 was 94.05% (90.90%) and 90.87% (89.99%),
correspondingly. The result of predictions on the 10% full
cross-validation test evidenced the quality (robustness,
stability and predictive power) of the obtained models.

Later, we also developed the linear discriminant

canonical analysis by checking the following statistics:

canonical regression coefficient (Rcan), Chi-squared and its p-

level [p(
2
)] [73]. This statistical analysis also permitted us

to order these compounds accordingly with their activity

profile. Atom-type non-stochastic and stochastic linear

indices & LDA antitrichomonal activity canonical analysis
principal root are given below:

The canonical transformation of the LDA results with
non-stochastic and stochastic atom-type linear fingerprints
gives rise to canonical roots with good canonical regression
coefficients of 0.82 and 0.83, respectively. Chi-squared test
permits us to assess the statistical signification of this
analysis as having a p-level <0.0001. The canonical scores of
all active and inactive compounds appear in Table 4 and 5,
correspondingly.

On the other hand, a close inspection of the molecular
descriptors included in both LDA-based QSAR models
showed that several of these molecular fingerprints are
strongly interrelated to each other. In Table 8 we give the
correlation coefficients of the molecular descriptors in Eqs
13 and 14.

The orthogonalization process of molecular descriptors
was introduced by Randić several years ago as a way to
improve the statistical interpretation of the models by using
interrelated indices [60-66]. This process is an approach in
which molecular descriptors are transformed in such a way
that they do not mutually correlate. Both the non-orthogonal

Classroot = 2.347 -1.759
s
f1L

H
(xE) +1.52

s
f14L(xE) -1.019

s
f1L

H
(xE-H) +1.243

s
f4L

H
(xE-H)     (15)

N = 90    = 0.32   Rcan
 
= 0.82   

2
 = 97.78   Mean(+) = -1.65   Mean(-) = 1.26   p<0.0001

Classroot = -0.4146 -9.396f1L(xE) +10.4439f2L
H
(xE) -2.1972f0L(xE) -0.7323f8L

H
(xE-H)  (16)

N = 90   = 0.308  Rcan
 
= 0.83  

2
 = 101.15  Mean(+) = -1.69  Mean(-) = 1.29   p<0.0001
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descriptors and derived orthogonal descriptors contain the
same information. Therefore, the same statistical parameters
of the QSAR models are obtained [60-66].

In Table 8  we also resume the results of the

orthogonalization of molecular descriptors included in both

equations. In this case, the models 13a and 14a correspond
to the final models with the orthogonalized linear indices.

Here, we used the symbols 
m
O(fk(x)), where the superscript

m expresses the order of importance of the variable (fk(x))
after a preliminary forward stepwise analysis and O means

orthogonal.

It has to be highlighted here that the orthogonal
descriptor-based models coincide with the collinear (i.e.,

ordinary) linear descriptors-based models in all statistical

parameters. The statistical coefficients of LDA-QSARs ,
D

2
, F, C, accuracy (Qtotal) are the same whether we use a set

of non-orthogonal descriptors or the corresponding set of

orthogonal indices (see Table 8). [60-66].

This fact also makes possible the interpretation of the

coefficients in the LDA-QSAR equations. Therefore,
m
O(fk(x)) may be classified according to the distance k into

short- (0-5), mid- (6-10), and long-range non-stochastic and

stochastic linear indices. The information in Table 8 clearly
shows that the major contribution to antitrichomonal  activity

is provided by short-range atom-type (heteroatoms and H-

atoms bonding to heteroatoms) linear indices. These short-
range local descriptors are putative molecular charge, dipole

moment, and H-bonding acceptors, and H-bonding donors.

3.3. Simulation of an Experiment of Lead Generation by
Computational Screening

In addition to high-throughput screening technology,
virtual (in silico) screening has become one of the main tools
for identifying leads [24,25,54]. Virtual screening is actually
one of the computational tools used to filter out unwanted
chemicals from physical and/or in silico libraries [24,25,54].
Virtual screening techniques may be classified according to
their particular modeling of molecular recognition and the
type of algorithm used in database searching [24,25,54]. If
the target (or at least its active site) 3D structure is known,
one of the structure-based virtual screening methods can be
applied. By contrast, ligand-based methods are founded on
the principle of similarity, that is, similar compounds are
assumed to produce similar effects. The absence of a
receptor 3D structure is the main reason for the application
of ligand-based methods. However, most (Q)SAR methods
are focused on one single family of compounds or a specific
action mode. Nevertheless, our group has shown that new
lead drugs can be designed and/or selected even if their
mechanism of action is completely unknown, by using
algorithms based on the structural characterization of a
structurally diverse database with molecular descriptors and
some pattern recognition technologies such as LDA
[22,23,35,36,66].

In order to prove the possibilities of the present approach
for the virtual screening of trichomonacidal compounds, we
have selected a series of 9 compounds whose structures are
given in Table 9. They have been selected from the current

Table 8. Intercorrelation of the molecular descriptors included in the LDA-based QSAR models and results of Randić’s

orthogonalization analysis.

Non-orthogonal atom-type non-stochastic linear indices Non-orthogonal atom-type stochastic linear indices

f1L(xE) f2L
H(xE) f0L(xE) f8L

H(xE-H) s
f1L

H(xE) s
f14L(xE) s

f1L
H(xE-H) s

f4L
H(xE-H)

1.00 0.97 0.85 0.23 1.00 0.99 0.61 0.59

1.00 0.92 0.41 1.00 0.54 0.52

1.00 0.50 1.00 0.98

1.00 1.00

Orthogonal atom-type non-stochastic linear indices Orthogonal atom-type stochastic linear indices

1O (f1L(xE)) 2O (f2L
H(xE)) 3O (f0L(xE)) 4O (f8L

H(xE-H)) 1O (s
f1L

H(xE)) 2O (s
f14L(xE)) 3O (s

f1L
H(xE-H)) 4O (s

f4L
H(xE-H))

1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

1.00 0.00 0.00 1.00 0.00 0.00

1.00 0.00 1.00 0.00

1.00 1.00

LDA-based model derived with orthogonal atom-type non-stochastic

linear indices

LDA-based model derived with orthogonal atom-type stochastic linear indices

Class = 0.50 +3.571O (f1L(xE)) -12.352O (f2L
H(xE))

+6.043O(f0L(xE)) +1.614O(f8L
H(xE-H))     (13a)

N = 90     = 0.308     D2 = 8.91    F(4, 85) = 47.558

C = 0.91     Qtotal = 95.56      p<0.0001

Class = -0.96 +3.031O (s
f1L

H(xE)) -33.432O ( sf14L(xE))

+1.023O( s
f1L

H(xE-H)) -22.694O (s
f4L

H(xE-H)) (14a)

N = 90      = 0.32     D2 = 8.43     F(4, 85) = 44,999

C = 0.82     Qtotal = 91.11      p<0.0001
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medicinal chemistry literature reporting them as promising
trichomonacidal compounds and showing that they are active
in one or several experimental assays [67,69,74,75].

In this experiment of ‘simulation’ of virtual screening, 9
previously reported trichomonacidal compounds with potent-
moderate antitrichomonal activity were evaluated with
models 13 and 14 as active/inactive ones. The results of the
classification are shown in Table 9.

As can be seen, both models classify correctly most of
the 9 selected compounds. In the second case (Eq. 14) only

two lead-compound were classified as false inactives
(77.77% of correct classification), while with model 13, the
prediction has an overall accuracy of 100%. This result is the
most important validation for the model developed here
because it has been able to detect a series of compounds as
active from a database composed of compounds selected
from literature and these chemicals have shown the predicted
activity.

Finally, these compounds taken from the latest literature
can be included in the training series in order to derive more

Table 9. Lead identified as Trichomonacidal from literature by using LDA-based QSAR models in simulate virtual screening.

Comp.
a

Ref.
b P%

c
Score

d P%
e

Score
f

Antitrichomonal Activity

1 74 100.00 -4.10 100.00 -5.75 MIC = 31.5μg/mlg

2 74 100.00 -7.62 100.00 -9.76 MIC = 12.5μg/ml g

3 75 100.00 -3.45 100.00 -5.20 MIC= 31.3μg/ml g

4 75 100.00 -3.45 100.00 -5.35 MIC= 3.9μg/ml g

5 76 99.91 -2.42 99.84 -2.79 MLC =50μg/mlh

LD50 = 50μg/mlh

6 67 99.91 -2.43 99.99 -3.9573 100μg/ml = 71.3I

10μg/ml = 14.4 I

1μg/ml = 0.0 i

7 67 99.90 -2.39 99.99 -3.9591 100μg/ml = [87.5] I

10μg/ml = 17.3 I

1μg/ml = 9.6 i

8 69 26.35 -0.01 -93.21 0.82 100 = 58.3[82.3]j

10 = 29.1[21.6] j

1= 18.1[6.8] j

9 69 21.22 0.02 -92.26 0.77 100 = 65.4 [73.9] j

10 = 56.7 [16.7] j

1= 40.1 [0.0] j

aThe molecular structure of the compounds represented with numbers are shown at the top  of this Table. bbibliographical references where were taken the

molecules together with in vitro activity. cAntitrichomonal  activity predicted by Eq 13; P% = [P(Active) - P(Inactive)]x100. dCanonical scores obtained from

canonical analysis (Eq. 15). eAntitrichomonal activity predicted by Eq. 14; P% = [P(Active) - P(Inactive)]x100. fCanonical scores obtained from canonical

analysis (Eq. 15). gMIC: minimum inhibitory concentration. Most of these compounds showed better activity against T. vaginalis than metronidazole (MIC =

25μg/ml). hMLC: minimum lethal concentration used that killed all the parasites by 24h. LD50: minimum concentration used that reduced the number of

parasites at least 50%. This compound showed a weak inhibitory activity compared with metronidazole (MLC =1μg/ml and LD50 =1μg/ml). iPercentage of

inhibition of T. Vaginalis growth at the indicated doses at 24h. In brackets; percentage of reduction. jSpecific activity against T. Vaginalis expressed as

N
N Cl

R

CONHR'

O

Cl

NO2

Cl

NO2

  R' =

2: R = H

1: R = H

R' =

N
N Cl

R

O

3: n = CH2-CH2

4: n = CH2=CH2n

R = NO2

R = NO2

N CH2CH2

N
H

N

NO2

Cl- 5

N

N

CO2Et

OCO2Et
O2N

6

N

N

CO2Et

OCO2-i-But
O2N

7 N N

CH3NH2

8

N N

CH3NH2

9



16    Current Drug Discovery Technologies, 2005, Vol. 2, No. 4 Marrero-Ponce et al.

robust classification models. By this means, the derivation of
the classifier model is considered as an iterative process in
which novel compounds with novel structural features are
incorporated into the training set for improving the quality of
the models so developed [22].

3.4. Ligand-Based Virtual in Silico Screening and Lead
Trichomonacidals Discovery

In order to test the potential of TOMOCOMD-CARDD
method and LDA for detecting novel antiprotozoal leads, we
predicted the biological activity of all the chemicals
contained in our ‘in-house’ collections of indazole, indole,
cinnoline and quinoxaline derivatives, which have been
recently obtained by our chemical synthesis team [67,77-84].
On the basis of computer-aided predictions we selected
potential trichomonacidal compounds (virtual hits). The
following criteria were used for the hits’ selection: 1)

compounds were selected as hits if the value of posterior
probability of possessing antitrichomonal activity exceeded
97% ( P 95%) by both LDA-based QSAR models, and 2)
If, among the compounds designed by our chemical team,
too many similar compounds satisfied criterion 1, then only
several representative structures were selected. Some
compounds classified as inactive by both LDA-based QSAR
models were also in vitro tested.

The structures of potential trichomonicidal (and inactives
ones) from different chemical series (VA1-VA6), selected on
the basis of these criteria, are presented in Figure 5. Later, all
selected hits were re-synthesized and experimentally tested
for their antitrichomonal effect. The results of the activity
against T. vaginalis of the compound study objects are
shown in the Table 10. Our trained LDA-based QSAR
models (Eq. 13 and 14) successfully classified 19 out of 21
compounds yielding an accuracy of the 90.48% (19/21).

Table 10. Results of the computational evaluation using LDA-based QSAR models and percentages of citostatic and/or citocidal

activity [brackets] for the three concentrations assayed in vitro against Trichomonas vaginalis.

Theoretical results in vitro activity (μg/ml)
h

%CA24h [%C24h] %CA48h [%C48h]
Compound

*
Class

 a
P%

b Score
c

Class
 d

P%
e Score

f
Class

g

100 10 1 100 10 1

VA1-31 + 99.95 -2.59 - -99.92 2.35 - 0.00 1.73 8.65 10.39 2.61 3.46

VA1-33 - -80.98 0.92 - -99.92 2.35 - 23.38 0.00 0.00 14.72 9.09 0.00

VA2-10 + 99.99 -3.34 + 100.00 -4.02 + [98.34] [91.10] 0.00 [99.75] 88.25 12.47

VA2-17 + 99.99 -3.34 + 100.00 -4.02 + [98.73] 76.62 0.00 [99.92] 62.88 6.98

VA2-25 + 99.97 -2.74 - -99.92 2.35 + [99.61] [96.48] 0.00 [100] [97.38] 4.86

VA2-26 - -71.76 0.77 - -99.92 2.35 - 21.76 0.00 0.00 6.98 0.00 0.00

VA2-38 + 99.98 -2.88 + 100.00 -4.02 + [100.00] [99.07] 69.31 [100.00] [100.00] 38.01

VA3-3c - -97.13 1.59 - -99.92 2.35 - 0.00 0.00 0.00 7.01 0.00 0.00

VA3-3f + 99.62 -1.93 - -99.92 2.35 - 0.00 0.00 0.00 3.18 0.00 0.00

VA3-8a - -97.19 1.59 - -99.92 2.35 - 78.61 5.23 0.00 84.71 2.34 0.00

VA4-10 + 100.00 -7.38 + 100.00 -6.66 + [100.00] 83.21 0.00 [100.00] 28.54 0.00

VA4-18 - -58.07 0.61 - -99.92 2.35 - 21.27 0.00 0.00 0.00 11.55 0.00

VA5-5b + 99.99 -3.31 + 100.00 -4.02 + [99.86] [98.37] 20.81 [100.00] [97.52] 2.83

VA5-6 + 100.00 -3.48 + 100.00 -4.02 + [100.00] [93.30] 2.01 [100.00] 86.32 1.53

VA5-9a + 99.99 -3.15 + 99.85 -2.82 + [99.51] 43.25 0.00 [99.32] 10.61 0.00

VA5-10 + 100.00 -3.75 + 99.85 -2.82 + [97.85] 24.54 0.00 [98.83] 16.03 0.00

VA5-15c + 100.00 -3.68 + 99.82 -2.75 + [99.62] 0.00 0.00 [100.00] 0.00 0.00

VA6-9a + 99.39 -1.77 + 100.00 -4.19 + [95.58] 12.04 9.85 [95.94] 21.82 13.47

VA6-10a + 99.97 -2.81 + 100.00 -13.07 + [97.01] 18.98 5.84 [95.26] 10.82 10.44

VA6-17b - -97.48 1.63 + 100.00 -8.34 - 40.51 18.61 0.00 43.83 10.44 0.00

VA6-22 + 99.98 -2.89 + 99.99 -3.86 + 91.51 17.15 16.42 [96.41] 14.99 10.82

MTZ + 97.23 -1.26 + 91.69 -1.41 + [99.63] [99.18] [98.19] [100] [99.72] [98.79]

*The molecular structures of the compounds represented with codes are shown in Figure 5. a,dIn silico classification obtained from models 13 and 14 using non-

stochastic and stochastic atom-type linear indices, respectively. b,eResults of the classification of compounds obtained from model 13 and 14, correspondingly:

P% = [P(Active) - P(Inactive)]x100. c,fCanonical scores obtained from models 15 and 16, correspondingly. gObserved (experimental activity) classification

against T. vaginalis . hPharmacology activity of each tested compounds, which were added to the cultures at doses of 100, 10 and 1μg/ml: %CA# = Citostatic

activity(24 ó 48 hours) and [%C#] = Citocidal activity(24 ó 48 hours). MTZ = Metronidazole (concentration for metronidazole were 2, 1 and 0.5 mg/ml, respectively).
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These outcomes exemplify how the present approach could
be used for the selection/identification of new
trichomonacidal drug candidates and also to remove
undesired chemicals as early as possible.

In general, the compounds VA2-25, VA2-38 and VA5-5b
that belong to the fused indazolinone, 1-hexenylindazolols,
and 1-benzylindazolols series maintain their efficacy at 10

g/ml with an important trichomonacidal (cytocidal) activity
at 48h (24h): 97.38% (96.48%), 100.00% (99.07%) and
97.52% (98.37%), respectively. It is remarkable that these
compounds did not show toxic activity in macrophages
cultivations at these concentrations.

Other two compounds, VA2-10 and VA5-6 (1-substituted
indazolols) showed appreciable activity at the concentration
of 10 g/ml at 24h and low non-specific cytotoxicity [85].
On the other hand, eight compounds (VA2-17, VA4-10,
VA5-9a, VA5-10, VA5-15c, VA6-9a, VA6-10a, and VA6-
22) showed activity against T. vaginalis between 96% and
100% at the concentration of 100 μg/ml and low cytotoxicity
at this concentration [85]. All these compounds can be
considered as new antitrichomonal  agents.  Even so, none of
the studied compounds was more active than metronidazole.
Our current results are significant because they demonstrate
the straightforward way in which TOMOCOMD-CARDD
method can identify new trichomonacidal leads.

4. CONCLUDING REMARKS

The main conclusion of this work is that it has been able
to develop in silico models for one of the main steps of drug
discovery: lead selection (or generation). These models
permitted the identification of new hits and lead drug-like
chemicals with antitrichomonas activity. The straightforward
way in which TOMOCOMD-CARDD method can identify
new trichomonacidal leads demonstrates a significant aspect
of our work.
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