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Abstract 

The great advances in digital technology as well as in the light microscopy field in 

recent years, determined that digital cellular imaging had acquired a growing 

importance in cell biology. New and more sophisticated acquisition methods, like those 

employed in high content screening, usually produce a huge amount of data which 

demands the power of computers to analyze them. This approach not only allows 

increasing speed but also can supersede some limitations inherent to human observers. 

Computer image analysis in cell microscopy can address diverse tasks like (among 

others) cell classification and counting, studies on sub-cellular structures and studies on 

living cells. It also targets fields like pathology, vegetable bio-technology, toxicology, 

drug development and others. 

This work reviews a selection of the most updated literature related to digital image 

processing in cell imaging. Topics covered begin with image restoration with functions 

like correcting uneven illumination, noise filtering and reduction of blurring. Then image 

segmentation especially oriented to cell images is addressed, including the separation 

of cell aggregates and how to evaluate the segmentation effectiveness and compare the 

algorithms’ performance for specific tasks. Finally, some pattern recognition and 

classification issues in cell image processing are considered. It is the author’s hope that 

this review article will help the researchers in this field to have a rapid orientation, which 

can make easier for them to develop or select an appropriate algorithm, suited to the 

needs of the cell image processing problem to be solved.   

 

Keywords: Cellular imaging, digital image processing. 
 

1. INTRODUCTION 

Automated analysis of diverse information related to biological structures and 

functions of living organisms has become a remarkable area in biological research, in 

which images are one of the most relevant classes of related data. Due to the great 

advances in the digital technology as well as in the light microscopy field during the past 

two decades [1], the studies on cell biology through cellular imaging have acquired a 
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1continuously growing importance. The computational tools developed so far allow 

performing molecular imaging at the cellular and molecular level and has been 

recognized as a main area of research and development in Digital Image Processing 

(DIP) [2]-[4]. In particular, remarkable developments that have contributed to this growth 

are fluorescent probes and high resolution microscopes. The role of cell microscopy in 

research related to genome and proteome has gained a primary significance, which 

includes studies on living cells, such as cell phase identification, cell tracking, or 

tracking of sub-cellular structures. New and more sophisticated acquisition methods are 

being developed, that usually produce a huge amount of data which demands the 

power of computers in order to analyze them. The area of high content screening [5], [6] 
is an example of this situation, for which some examples will be presented in the section 

on current applications.  

Computer image analysis in cell microscopy also targets fields like pathology, 

vegetable bio-technology, toxicology, drug development and others. There exist various 

examples of software systems that have been developed for cell image analysis, among 

them [7]-[10]. The importance of open source code in bioimage informatics for cell 

biology applications is stressed in [11]. 

This article deals with the digital image processing issues related to cellular bio-

imaging. Digital image processing is a wide field for which an excellent treatment can be 

found in [12]. DIP comprehends numerous applications; see for example [14], [15]. In 

the particular case of cellular imaging, DIP applications can encompass also image 

analysis and pattern recognition tasks, which fall in the general field of computer vision. 

The objective there is to substitute the human experts in analyzing cell images, in order 

to obtain useful information about diverse biological processes. There are several 

motivations for doing this: analyzing great amounts of microscopy images by human 

experts tends to be a tedious and time-consuming task, which is prone to intra- and 

inter-analysts errors due to tiredness and subjectivity. There are also limitations of the 

human visual system (like the limited number of gray levels or colors that can be 

discriminated) that can be superseded by the computer image analysis systems. The 
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current (and ever growing) speed of computers is also a key factor that strongly 

influences the productiveness of the automated cell image analysis systems, with 

extensive use of digital image processing. 

Digital image processing systems for cellular imaging applications involve many of 

the standard functions that are found in general DIP systems, but that are specifically 

configured to cope with many task specific issues. In this case, selecting or developing 

and implementing an appropriate algorithm for cellular imaging applications is strongly 

influenced by the characteristics of the microscopy technique used and also by the 

nature of the images to be processed.  

There are currently a variety of optical microscopy modalities that can be employed 

for cell imaging: brightfield, darkfield, phase contrast, polarization contrast, differential 

interference contrast, widefield fluorescence and confocal laser scanning fluorescence, 

as described in [1]. On the other hand, there are a huge variety of different cells from 

living organisms, whose images can be very different in regard of many attributes. This 

means that there are not general solutions for cell image processing: instead the 

algorithms are to be devised according to the characteristics of each class of images. 

This diversity can be appreciated in the examples of Figure 1, where four different cell 

microscopy images are shown. 
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Fig. (1).Examples of cell images, (a) cervical cytology image, (b) human peripheral blood 
smear, (c) bone marrow, (d) fluorescence microscopy image of e-coli. Actual colors are very 
diverse. 

The main applications to be addressed in this article are organized in the sections 

described in the next paragraphs, and throughout the paper it will be assumed that the 

reader has at least an introductory knowledge of the basic topics related to DIP. 

Image restoration is understood as the set of techniques used to improve the image 

quality before performing further processing. This topic is addressed in a first section, 

discussing non-uniform illumination correction, image deblurring and noise filtering. 

Following this section the problem of cell image segmentation is addressed. It is to 

be stressed the fact that a universal segmentation method which can exhibit the best 

performance in every situation does not exist. In this paper, the most widely employed 

methods for cell segmentation like watershed transform and level sets are presented, 

and some others are briefly summarized. An important issue discussed here is 

segmentation of touching or overlapping cells that must be separated in order to 

analyze the cells individually. As a last important issue on segmentation, some 

techniques to evaluate and compare the performance of different algorithms are 

presented. 

The whole process ends with data analysis, which usually includes statistical  

modeling  and image classification; this is addressed in the  next section. Data analysis 

is more on the side of computer vision, and although it is somewhat beyond the scope 

of the strict image processing field, is briefly presented here. Finally, a last section is 

devoted to show and make a short discussion of some specific applications in which 

many of the DIP processes analyzed in the previous sections are combined to solve the 

problems inherent to them. 

The algorithmic implementation of the functions that are necessary to perform a cell 

DIP task is usually realized the in form of a pipeline, as illustrated in Figure 2, where 

image restoration includes illumination correction, deblurring and denoising. 

According to the previous paragraphs, DIP techniques used in cellular imaging are 

very diverse and are usually selected and applied in order to satisfy the needs of 
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specific situations. Having in mind that in the last years there have been published 

hundreds of articles in this field, the authors have attempted to make a meaningful 

selection of significant papers, with the hope that reviewing them will provide a 

comprehensive overview of the state of the art in the field, as well as introducing the 

beginners to the most used techniques. This hopefully will help to have a rapid 

orientation when addressing a specific problem, as well as appropriately selecting or 

developing the algorithms needed for the cell image processing problem under study.  

 
 
 
 
Fig. (2). Algorithmic pipeline for cell image processing. 

 
2. IMAGE RESTORATION 

Under the general term “image restoration”, the DIP operations related to non-

uniform illumination correction, denoising and deblurring will be considered in this 

section. It is to be recognized, however, that there are other image processing functions 

that can be potentially employed in the image restoration stage, as it is the case of 

interpolation  or superresolution [16] [17], which we will not consider explicitly in this 

article because these have not found an expression yet in the literature on cell image 

processing reviewed in this article. Before discussing techniques to improve the image 

quality prior to further processing, it is worth noting that there have been published work 

specifically devoted to evaluate the image quality. For example, in applications like high 

content screening, images of too poor quality should be detected and discarded, 

because they might decrease the accuracy and reproducibility of routines such as cell 

counting and may lead to meaningless results. The problem of quality evaluation of 

fluorescence images was addressed in [19], paying attention to separation of objects 

and background and allowing the evaluation of the suitability of the images for an 

automated analysis by means of some parameters. An approach to quality evaluation 

based in artificial neural networks was introduced in [20]. 

2.1. Non-uniform illumination correction 
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Illumination in microscopy images often has a noticeable fluctuation that can be 

more than 1.5-fold across the field of view, even if fiber optics light sources are used, 

and sometimes including cases where commercial illumination-correction from image 

analysis software is employed. Non-uniform illumination implies the existence of an 

illumination gradient and this means that the background does not have the same 

intensity at all pixel locations except for random noise, affecting the intensity level in the 

positions where the cells are located. 

This effect prevents an appropriate segmentation of the image and can deteriorate 

the overall behavior of any computer vision system for cell analysis. Correction of 

shading in the microscope using the flat-field technique [1] can be employed to solve 

this problem, however a new empty field is needed whenever the microscope 

illumination setting is modified, which means a tedious and time-consuming task, not 

tolerable in cases like high throughput imaging systems, where very short acquisition 

time is needed due to the large number of images to be captured and processed. For 

this reason, image processing techniques are preferred in this case to correct the non-

uniform illumination. Correcting the non-uniform illumination using an appropriate 

algorithm can be thought in general as determining the varying background intensity 

and subtracting it from the original image. Some recent works that deal with the 

correction of this impairment will be analyzed, with emphasis in the illumination 

correction method based in grayscale mathematical morphology. 

A non-even illumination correction method based in the estimation of the 

background illumination level and its subtraction from the image was introduced in 

[20] [21], , in the context of high-throughput image-based siRNA screens of 

mammalian cells. In this case the background estimation was made by means of a low-

pass filter with a kernel at least twice the diameter of the cell nuclei. This produced a 

blurred image that when subtracted from the original image, reduced the grey levels of 

the background while the objects of interest remained at a significantly higher intensity. 

After this, further local background correction was made. A second example of using 

non-uniform illumination correction techniques can be found in [22] in the context of the 

detection and counting of "in vivo" cells to predict cell’s migratory potential. In this case, 
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the background is considered as a varying mean value of an illumination gradient. This 

varying mean was approximated by a surface calculated through mean filtering with a 

large window. As a result, the filtering surface obtained is what would result if all the 

local variations in the illumination (due to objects like cells, or to random noise) were 

ignored. In a last step, the obtained 2D background function is subtracted from the 

original image, producing the desired correction. 

Another example is described in [23], which consists in applying a regional maxima 

kernel (equivalent to a grayscale morphological dilation) to the image, in order to 

separate the bright pixels from the dark ones. However, the authors recognize that this 

process modifies the grayscale values and that this can affect the intensity values.  

The morphological grayscale top-hat operation can be used in general situations for 

correcting the uneven illumination. The basic morphological gray-scale operations in 

which this technique is based are described in detail in [24]. Given a grayscale image f 

and a structuring element (SE) B (another set of a determined shape, that will be 

considered flat here) the grayscale morphological top-hat transform of a grayscale 

image f is given by   

     (1) 
 
where ô denotes the open top-hat operation and the morphological opening. This 

transform, when the size and shape of the SE are appropriately chosen, can be used 

very effectively to correct the non-uniform illumination. This principle was applied in the 

analysis of fluorescence microscopy images of e-coli cells in [25]. The morphological 

top-hat approach preserves the illumination level of the objects to be segmented and 

allows a locally adaptive correction of the illumination gradient. Determining an 

appropriate size and shape of the SE is an important task in this application. Figure 3 

illustrates the effect of correcting the background non-uniform illumination in a 

fluorescence image from the above cited example. 

Another approach to this problem is presented in [26] in the general context of 

performing an improvement of the image contrast in grayscale images. Here the 

background is detected by using a grayscale morphological opening by reconstruction 
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followed by an erosion operation. This approach avoids the generation of new contours 

that can arise when working with structuring elements or various sizes. However the 

method’s performance for the particular case of cell images is not addressed in this 

reference and this could be an open area for research.  

 
 
 
 
 
 
 
Fig. (3). Correction of non-uniform illumination and background suppression using 
morphological top-hat with a disk SE of appropriate size. (a) Original fluorescence image of e-
coli bacteria (grayscale). (b) corrected image. 

2.2. Image denoising 

Image denoising techniques in cellular imaging are highly dependent of the noise 

statistics. There is a wide variety of noise filtering techniques used in DIP: median 

filters, vector median filters for color images, Wiener filtering, morphological filtering, 

anisotropic diffusion and wavelet-based filtering among others are significant examples, 

and this field of research is currently very active.  In the case of cell image processing, 

some techniques have been mostly reported. For example, smoothing by means of a 

Gaussian filter was used in [27] in the implementation of a single cell based image 

analysis, for high throughput screening of viral infection.  

A median filtering for noise reduction was used in [28] in the context of segmentation 

of tuberculosis bacilli. In [29] an optimized locally adaptive non-local means denoising 

filter was employed for cryo-electron microscopy data. In [30] linear and nonlinear 

spatial filters such as the Gaussian, median, and directional coherence enhancement 

filter, as well as iterative methods for filtering based on partial differential equations, are 

implemented and compared.  

Morphological filtering was applied in [31] for the purpose of segmentation and 

labeling of macrophages. In this case filtering served also for the purpose of deleting 
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artifacts due to the presence of small particles. Morphological filtering can be achieved 

by a combination of the opening and closing operations. 

In [32] morphological operations are used for simultaneous sharpening and noise 

reduction in high throughput chromosome studies. In [33] a nonparametric regression 

method is used to denoise fluorescence microscopy images, which makes use of the 

redundancy inherent to 3D image sequences in order to reduce the effects of Poisson 

noise. Another example of algorithm for Poisson noise filtering in a low signal to noise 

ratio environment found in fluorescence confocal microscopy is shown in [34], where 

noise is removed using spatial and temporal correlations and an anisotropic three-

dimensional filter that can be tuned in space and time separately.    

The literature review reveals that wavelet denoising has found a widespread use in 

many applications, ranging from conventional optical to fluorescence microscopy. 

Having in mind this motivation, we will analyze this approach in some detail in the 

following sections.  

2.2.1. The discrete wavelet transform 

The discrete wavelet transform (DWT) is a mathematical tool that can be used very 

effectively in signal and image analysis. There is a great amount of literature on DWT, 

and specifically for the DWT-2D (in two variables) used in image processing, see for 

example [13].  

In DWT analysis, a signal x(t) can be described through a linear decomposition as  

       .                                      (2) 

In this equation  are integer indexes,  are the wavelet coefficients of the 

expansion, and  is a set of wavelet functions in t. Notice that the wavelet coefficients 

 constitute a discrete set, and that the coefficients’ values are calculated according 

to 

                 (3) 
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The DWT obtains the decomposition of the signal x(t) (usually of its sampled version 

x[n]) into a set of orthonormal wavelets and their associated scaling functions that 

together constitute a wavelet basis. These functions can belong to different wavelet 

families that are expressed by the functions  which can be generated by dilations 

and translations of a basic, or “mother” wavelet. These dilations and translations are 

discrete, and the indexes j and k are respectively related to these processes, that can 

be expressed for the wavelet functions as   

                  (4)  

In Eq. (4) the functions  are dilated in a dyadic form (in powers of two), when 

varying the values of the index j, and in analogous way translated when varying the 

index k. In this process, translation is associated with time resolution, and dilation 

provides scaling, a concept closely related here to frequency resolution. Figure 4 shows 

examples of wavelets functions that are well described in the literature. 

 
 
 
 
 
 
 
 
 
 

Fig.(4). Examples of wavelets, (a) Daubechies wavelet db10, (b) Coiflet, coif6 wavelet. 

The DWT can be calculated very efficiently through the fast wavelet transform 

algorithm (FWT), and has many applications in DIP. The result of the DWT is a multi-

resolution decomposition, where the signal is successively decomposed in “detail” and 

“approximation” coefficients. This decomposition is realized through lowpass and 

highpass filtering for the approximation and for the details respectively, using so called 

“Quadrature Mirror Filters” (QMF.) There are two types of QMF filters: the lowpass 
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scaling filter h, and the highpass wavelet filter g, both with different versions for 

decomposition and reconstruction. 

The DWT is naturally extended to the bi-dimensional (2-D) case of images, where a 

2-D scaling function and three 2-D wavelet functions are defined for horizontal, vertical 

and diagonal details:  

                                              (5.1) 

                                       (5.2) 

                                       (5.3) 

                                       (5.4) 

 

 

 

 

 

 

 

Fig. (5). DWT-2D decomposition from level j to level j+1, notice how the approximation and 
detail coefficients are obtained by    means of filtering rows and columns in one dimension. 

The wavelet decomposition in two variables is separable, which means that the one-

dimensional algorithm to calculate the DWT can be applied successively to rows and 

columns of the image matrix in order to obtain the bi- dimensional DWT, or DWT-2D. 

This process is accomplished as in the one-dimensional case through lowpass and 

highpass filtering, as depicted in Figure 5. The typical way to show the images 

corresponding to the approximation and the different details is depicted in Figure 6. 

Notice that the inverse discrete wavelet transform can be obtained from the wavelet 

decomposition structure by means of a filtering and interpolation process. The inverse 

wavelet transform (IDWT) is an essential part of the wavelet denoising process. 

2.2.2. Wavelet denoising 
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Wavelet denoising is performed through a process which consists  in extracting 

coherent structures from the image using the DWT-2D. In this case, wavelet coefficients 

that are mostly due to noise, which is uncorrelated with the wavelet basis functions, will 

have a low absolute value, while coefficients due to the useful image will have a higher 

correlation’s absolute value. Therefore, zeroing the wavelet coefficients with absolute 

value below a certain threshold provides a very effective noise filtering method. The 

wavelet transform is very robust to coefficient quantization: suppressing detail 

coefficients of low absolute values in the original, noiseless image, can have only a 

relatively small effect on the quality of the image recovered through the inverse DWT. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). (a) Cervical cytology image. (b) Wavelet decomposition at two levels. Notice the spatial 
ordering that is usually employed to organize the approximation and vertical, horizontal and 
diagonal detail images. 

The wavelet denoising algorithm can be summarized as follows: 
1. The noisy image is decomposed by means of the DWT-2D for a predetermined level 

J, using some specific wavelet. 
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2. The absolute values of the resulting DWT-2D detail coefficients are compared to a 

certain threshold, and the coefficients with absolute value below this threshold are 

assigned the value zero. 

3. The denoised image is obtained through reconstruction by means of the inverse 

DWT-2D. There are two ways in which thresholding can be performed, named soft- 

and hard thresholding, which are shown in equations (6.1) and (6.2) and depicted in 

Figure 7. An example of a noise filtered image is shown in Figure 8. 

 

                                   (6.1) 
 
 

              (6.2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.(7). Input-output characteristics in (a) hard and (b) soft thresholding. 

Determining the value of the threshold in wavelet denoising is a relevant issue, 

because if the threshold value is too conservative (small) the noise filtering effect will be 

limited, and on the other hand if the threshold value is too large, some valuable 

information in the image might be lost. Several alternatives to calculate the threshold 

value from the image parameters have been developed, and a careful selection is to be 
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made in order to achieve a successful denoising. A graphical example of wavelet image 

denoising results is shown in Figure 8. 

Consider now the case of fluorescence microscopy, where noise has a Poisson 

probability distribution due to the physical nature of the process. This means that there 

is dependence between the noise variance and mean value, and in this case a variance 

stabilization transform is firstly applied to the image data to remove this dependence, 

usually the so-called Anscombe transform or some related procedure. Then some 

alternative of wavelet denoising is applied. In what follows we will show several 

examples of these techniques. In [35] the general problem of Poisson noise removal is 

addressed. Here a variance stabilizing transform is used to obtain a Gaussian process 

form the original Poisson one, and then denoising is performed using wavelet filter 

banks, as well as ridgelets and curvelets (transforms in which the basic elements are 

directional and anisotropic, making them more suitable for some image processing 

tasks). Then the significant coefficients are detected using classical hypothesis testing. 

This work is of potential use in the area of cell image processing. Confocal microscopy 

is used in [36] for the study of events related to intracellular calcium concentration. 

Wavelet denoising was used successfully in this case, where threshold selection was 

derived from the standard deviation of the noise contaminating the signal. A fast 

algorithm is presented in [37] to reduce the Poisson noise in fluorescence microscopy, 

based in the use of the Haar wavelet and a technique of linear expansion of thresholds. 

This solution showed to have a performance comparable to other multiscale methods 

but orders of magnitude faster. A high content screening application for automated 

monitoring of cell populations is described in [38], in which denoising is accomplished 

through wavelet frames (where decimation at decomposition levels is omitted), this 

approach proved to be robust to local noise variations and allows segmentation even 

with low contrast to noise ratio. 
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Fig. (8). Image denoising, (a) image contaminated with Gaussian noise and (b) image after 
wavelet denoising. 

2.3. Image deblurring 

Blurring is an impairment that occurs in microscope imaging, which is usually 

mitigated through deconvolution techniques. This effect is particularly important in 3D 

fluorescence microscopy, where the distortion introduced by the microscope reduces 

the resolution attainable by the system, imposing limitations to the analysis of the 

specimens under study. An overview of the deconvolution methods used in 3-D 

fluorescence microscopy is presented in [39]. 

There are two sources of blurring in fluorescence microscopy: convolution of the 

object with the microscope point spread function (PSF), and random noise. The PSF is 

equivalent to the impulse response of the optical system, assuming linearity. There are 

optical methods to reduce blurring by rejecting the defocused light before it is detected, 

which need some computational processing to improve the effects of anisotropy, as well 

as purely computational methods. The general scheme of the blurring process and 

deblurring by image deconvolution is depicted in Figure 9.  

 
 
 
 
 
 
 
 

Fig. (9). General scheme of the process associated to image deconvolution, where convolution 
is denoted by the asterisk symbol. 

In fluorescence microscopy, a three-dimensional (3-D) image of an object is 

acquired from a set of 2-D images, obtained by focusing the microscope at different 
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planes. There are  various  sources  of distortion in an image acquired in this way: 

flickering of the lamp, non-uniform illumination, defocused light, attenuation, geometrical 

effects and Poisson noise related to the photon emission during fluorescence. In 

computational deconvolution for 3-D images, the algorithm processes a stack of 2-D 

slices to reduce their out of focus contribution to the image.  

Given that the PSF is the 3-D impulse response of the microscope system, assuming 

a linear model and Gaussian additive noise, the resulting image will be given by 

           (7) 

where  denotes the blurred microscopy image, is the original object, 

h(x,y,z) the PSF, * the convolution operation, and  is the noise process. In real 

cases, the background Poisson noise and the setup parameters used when measuring 

the PSF should be taken into account. Another issue is that Poisson noise constitutes a 

better model than Gaussian noise in low light conditions, where the signal to noise ratio 

is poorer. 

There are various methods for image deconvolution, and among them inverse 

filtering will be briefly described due to its straightforward interpretation. When the PSF 

is known and a noiseless image is assumed, the convolution property of the 

Fourier Transform when applied to equation (7) leads to the so-called inverse filtering, 

given by 

                              (8) 

where  is the deblurred image,  is the inverse Fourier transform operator, F 

and H are the Fourier transforms of the blurred image and the PSF respectively, and 

 the spatial frequency variables in the Fourier transform. Taking into account 

that  is bandlimited and in order to make possible the calculation of equation 

(8) when the values of  are very small, the truncated inverse filtering is defined as 

.       (9) 
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Inverse filtering requires performing a previous evaluation of the PSF, which can be 

realized experimentally by obtaining the images of point-like objects directly in the 

microscope and acquiring them. This method has the limitation that point objects lead to 

very poor signal to noise ratio. PSF can be evaluated also analytically, using the 

equations of diffraction theory, or computationally using blind deconvolution algorithms, 

which allow a simultaneous evaluation of the PSF and the object’s image.  

There have been recognized six classes of computational algorithms for 3-D image 

deconvolution: neighboring and no-neighboring, linear and nonlinear methods, statistical 

methods and blind deconvolution. Some application examples in cellular imaging are 

examined in the following. In [40] a realistic Poisson-Gaussian noise model is used in a 

formulation devoted to obtain an optimal regularization parameter and the resulting 

deconvolution algorithm was used in a real 3-D wide-field microscopy images with good 

results. In [41] the authors developed an algorithm that performs deconvolution when a 

thick specimen is imaged in a brightfield microscope, which prevents focusing the entire 

object. The problem of deconvolution and chromatic aberration corrections in multi-

dimensional confocal microscopy is addressed in [42] in order to achieve an accurate 

determination of colocalization between biological macromolecules at the subcellular 

level. The developed method implies the measurement and use of the system’s PSF. 

An algorithm for wavelet regularized deconvolution for 3-D fluorescence microscopy 

was developed in [43], which accelerates the deconvolution process for real data 

applications. Blind deconvolution is used in [44] for the specific application of image 

restoration in 3-D microscopy. Here a new PSF regularization method through learning-

based algorithms is introduced for applications in wide-field fluorescence microscopy. 

The algorithm developed allows reconstruction results with high resolution and low 

noise levels for real world images. 

 
3. IMAGE SEGMENTATION 

Segmentation is the process by means of which an image is subdivided in its 

constituent parts or objects, according to some criteria. This is one of the fundamental 

processes in any image processing or computer vision system, because it allows 
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extracting from the image the objects of interest in order to perform further analysis 

tasks such as description, pattern recognition or classification. The segmentation 

process ends when the relevant objects for the specific applications have been isolated. 

At this stage, the image will be constituted by connected sets of pixels that belong to the 

regions of interest and to the background, and that share some adjacency property. 

From a mathematical point of view, a segmentation of an image I defined in the 

domain , is a partition of this domain into N disjoint segments, which are  nonempty 

sets whose union is the domain , 

             .                                           (10) 

Segmentation is a topic widely studied in the general literature on DIP, see for 

example [13]. In the particular case of cell image processing, segmentation may pursue 

a wide variety of purposes and face numerous technical challenges. A concise and 

updated survey of the usage of the diverse segmentation methods in cell imaging can 

be found in [45]. The complexity of segmentation in cellular imaging is due to the 

multiple morphologies that can be found, the various modalities of microscopy currently 

used and the diverse possible purposes of the study to be made. These studies can 

include the analysis of the cell internal structures, which in such cases become the 

objects to be segmented. A common partial result of a segmentation process in cell 

imaging is a binary image, composed of the segmented objects and the background. 

These binary images are then used to select the regions of interest for their study. 

The purpose of this section is to review the segmentation techniques that are mostly 

used currently, to provide an approximation to the state of the art in cell image 

segmentation, and to discuss a set of representative examples. There are a vast 

number of segmentation techniques which have been developed for general 

applications in digital image processing, and in regard of cell images, there is not a 

method so far whose performance can be considered as the best in all situations, and 

such a solution is not foreseen currently. This means that there are a great number of 

ad hoc solutions for segmentation of specific types of images. Among the multiple 

segmentation algorithms that have been reported in the literature, the morphological 
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watershed transform and the active contours with level set techniques, both with many 

variants, are probably the most widely used currently in cell image processing. These 

methods will be reviewed in some detail in sections 3.1 and 3.2.Several other methods 

can also be found, of which a brief overview is also to be given in section 3.3. An 

important problem that usually appears in cell image segmentation is the necessity of 

separating cells that are touching or overlapping, and this topic will be addressed in 

section 3.4. Finally, it is important to recognize that given the large variety of 

segmentation techniques available, evaluating the effectiveness of a particular 

segmentation algorithm for a given application, as well as establishing metrics that allow 

comparisons between methods is of paramount importance. Having this motivation in 

mind, a brief summary and some discussion on segmentation eva-luation  methods  is  

presented in section 2.5.  

3.1. Image segmentation using the watershed transform 

The watershed transform as a segmentation tool is based in the concept that the 

intensity of an image can be represented as a surface in a 3-D space, in which the gray 

level is considered as an altitude. This image structure shares the properties of 

topographical surfaces, and as such it can exhibit slopes, hills, valleys and plateaus. 

This concept is used in mathematical morphology to define many grayscale 

morphological processing operations that can be applied to an image. 

The watershed transformation is a morphological process that can be used with high 

effectiveness for image segmentation, for which a thorough study can be found in [24]. 

Of primary importance for this algorithm are the following concepts, applied to the 

intensity surface of an image: 

• Regional minima: connected sets of points for which there are not surrounding pixels 

having a lower level. 

• Watershed catchment basins: sets of points such that a drop of water put on any of 

them would flow towards a well defined minimum. 

• Watershed ridges or lines: sets of points such that a drop of water put on one of them 

would flow indistinctly to more than one minimum. 
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The watershed transformation can be interpreted on the basis of the so-called 

immersion algorithm, in the following way: 

1. A small hole is punched in the bottom of each local minima of the image’s intensity 

topographical surface. 

2. The whole image surface is gradually immersed in a recipient full of water, and the 

water will begin to flood the local minima and their associated catchment basins. The 

surface of the water in each catchment basin will grow as the water level increases. 

3. As the water level increases in a given catchment basin, it tends to reach the 

surrounding ridge at some point, which would cause the water to overflow to an 

adjacent catchment basin. At this moment, a dam is constructed by means of a 

morphological algorithm, in order to prevent this overflow. This process is repeated 

for all the catchment basins in the image. 

4. At the end of the process all the catchment basins will be isolated from one another 

in such a way that a segmentation partition is established. 

 
 
 
 
 
 
 
 
 

Fig. (10). Illustration of the watershed immersion algorithm for image segmentation. 

The immersion process will eventually finish when only the tops of the dams are 

visible above the water surface, these are precisely the watershed lines. The watershed 

immersion algorithm can be considered as a combination of region growing and edge 

detection process, which assigns pixels to the most similar neighboring region starting 

from local minima. This algorithm can be completely implemented using morphological 

image processing operators. Figure 10 depicts a three-dimensional graphical illustration 

of the watershed immersion algorithm as it can be interpreted in an intuitive way.  
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In order to improve the watershed transform segmentation, some pre-processing 

techniques are to be used on the grayscale image. For example, applying the 

watershed transformation to the image’s gradient instead of the original image, tends to 

reinforce the watershed ridges of the image’s intensity surface and leads to a better 

watershed segmentation. This is illustrated in Figure 11(b), in which the morphological 

gradient of the image 11(a) was calculated.  

The watershed transform tends to produce an over-segmentation, which in some 

cases can be severe. This is due to the presence of local minima inherent to the image 

or to noise contamination, and suggests the convenience of noise filtering prior to 

segmentation. The mentioned effect is worst when the image of the gradient is 

employed, because the derivatives tend to reinforce the noise level in the image.  

One method often employed in order to reduce over-segmentation is the use of 

markers. Markers are connected components located in the image, which are used to 

limit the number of segmentation regions in the gradient (or any other) image. Markers 

can be internal when placed inside the objects of interest and external when they 

belong to the background. There are various DIP techniques to create internal and 

external markers. We mention minima imposition as another morphological technique 

used together with markers [24]. Figure 11(c) and (d) illustrates the usefulness of 

markers in watershed segmentation. 
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Fig. (11). (a) Original image to be segmented, (b) morphological gradient of the image in (a), 
where the enhancement of the borders can be appreciated; (c) watershed segmentation without 
markers, notice the severe oversegmentation, and (d) watershed segmentation using markers 
and minima imposition. 

Now we present some illustrative examples of the use of the watershed transform in 

specific experiments. In [46] the watershed segmentation is used in the context of high 

content screening applications in a toxicity assay. The full methodology uses also 

connected filters and granulometries for segmenting cells of different size, contrast and 

other attributes. In this work, specific markers are used to facilitate segmentation of the 

cells’ contours, other markers to highlight the nuclei and marking with green 

fluorescence protein (GFP) to quantify the effects of the toxics. The watershed 

transform was used with inner and outer markers, and over a gradient function 

associated to the contour of the cytoplasm. After segmentation, other global parameters 

associated to the cell populations in the images are calculated, especially the evolution 

of the spatial aggregations of cells using morphological granulometries. In [30] a  unified  

framework is developed to segment surface stained living cells from 3-D data sets of 

fluorescent images. Here the previously fluorescence-labeled cells are subject to a pre-

processing consisting in background suppression and ridge enhancement by means of 

filtering. Then marker-controlled watershed segmentation was performed, as well as 

segmentation by active contours (to be discussed later in this article) and a thorough 

evaluation of the results was made by comparison to a ground truth using similarity 

measures, obtaining slightly better results for the wastershed method. 

Simultaneous segmentation and classification of heterogeneous populations of cell 

nuclei in batches of 3-D confocal stacks of microscope images was addressed in [47], 
making use of watershed segmentation. The goal here was allowing segmentation in 

tissues containing multiple cell types with different nuclear features. The gradient-

weighted watershed algorithm produces here an over-segmentation and a method for 

fragment merging was developed, using multiple objects models and linear discriminant 

analysis to classify the candidates for merging. The authors obtained classification and 
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segmentation accuracies above 93% for images of different regions from a rat’s brain. 

Segmentation of in vivo Arabidopsis Thaliana cells in a time-lapse confocal microscopy 

study was made in [48] using the watershed transform. Here a technique to reduce 

over-segmentation was also developed, based on edge strength along the line that 

connects adjacent centroids in the cells. This allows elimination of bad and over-

segmented cells by means of an evaluation using support vector machine (SVM) 

classification. In [49] a combination of interactive manual and watershed segmentation 

is employed to efficiently track morphological changes of cells in living tissues, in time 

lapse movies obtained from a laser-scanning confocal microscope. Here manual 

interaction is used to create and manipulate seeds, or markers, in order to facilitate 

further watershed segmentation. The algorithm neither require previous definition of 

parameters nor trained human experts, and showed good segmentation results in 

reasonable computation time when compared to other similar existing tools. 

Watershed segmentation is frequently used to separate the components in cell 

aggregates, and this specific topic will be discussed later. 

3.2.  Active contours and level sets in image segmentation 

Active contours constitute a widely used approach for image segmentation and are 

used also for applications like motion tracking. This methodology is based in the use of 

deformable contours that can dynamically adapt to the shapes or motions of different 

objects. There are two basic formulations in segmentation with contours: the so-called 

snakes and the level sets approach. The evolution of the contours can be based in 

edges or in regions. For example, in edge-based active contours, an edge detector, like 

the image gradient, is used to find the boundaries of the region to be segmented, and 

the contours are attracted to these boundaries. In the case of region-based active 

contours, it is the statistical information on the image intensity inside the regions to be 

segmented which is used to drive the process of contour evolution. 

In the case of cell segmentation, the level sets approach is preferred because snakes 

cannot adapt simultaneously to the boundaries of more than one object: the contours in 

this case cannot change their topology during the evolution process. In the case of cell 

images, in which usually there are simultaneously various objects (cell, nuclei) to 
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segment, snakes are not capable of splitting in multiple boundaries. This is not the case 

of level sets, for which the contours can adapt to multiple boundaries or even merge 

whenever it is necessary. For this reason, the level sets approach is the one to be 

considered in this section. 

Level sets were introduced in [50] and have had further development since that time. 

In this formulation, the contours are represented implicitly by means of a bi-variate level 

set function, , defined in the domain Ω of the image  One particular 

level of this function (commonly the zero level) is defined as the contour, such as 

                    (11) 

The evolution of a level set function, together with the contour defined as the zero 

level, is exemplified in Figure 12. Notice that as the level set function  -which has 

the form of two inverted cones- decreases from an initial condition (the cone vertices 

move downwards), the contoursC corresponding to the level set propagate outwards in 

the zero level plane. The evolution of the contour C is in correspondence with the 

evolution of . 

If the contours are defined as the border between a positive and a negative area, 

they can be associated to the sign of , and the initial level set function  can 

be a signed distance from the initial contour,  

 ,        
 (12) 

where D is a distance function between some point (x, y), and  is the nearest 

pixel on the initial contour . 

The deformation of the contours in the level set method is represented usually by 

means of a partial differential equation (PDE) that evolves according to the magnitude 

of the gradient, as 

  .          (13) 

In equation (14), σ is a constant speed term that determines the movement of the 

contour and the function  is the mean curvature of  given by 
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       ,                           (14) 

where equation (13) can be interpreted as a description of motion motivated by a PDE. 

The process of image segmentation by means of level sets begins with a user-

defined boundary (a contour or set of points) and then the contour evolves in 

accordance to the above mentioned PDE. A stopping function is defined as a positive 

and decreasing function of the image gradient, such that the contours move in a normal 

direction at some speed and stops evolving once the stopping function is close to zero, 

when the contour delineates the borders of the objects. A property of the level sets 

segmentation method is that the contours can split or merge according to changes of 

topology in . This means that more than one boundary can be detected at the 

same time, and also that several initial contours can be established. This property 

makes the method particularly appropriate for cell or nuclei segmentation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

27



Fig. (12). Contour evolution in the level set formulation, (a) evolution of the level set 
function , and (b) the corresponding evolution of the contour C. Notice that in this case 
two contours initially separated merge as a result of the contour evolution. 

A first example of the application of level sets in cellular image processing can be 

found in [51], where it is performed the interpretation and measurement of the 

architectural organization of mitochondria in electron microscopy images. The images of 

mitochondria were firstly pre-processed by denoising and closing interrupted structures 

using an approach based in edge and coherence enhancing diffusion. This allows noise 

removal and structure closure at certain scales, while preserving both the orientation 

and magnitude of discontinuities. A variational level sets method was then used for 

contour extraction. In [52] the level sets method was applied to multi-cell segmentation 

and tracking in time-lapse fluorescence microscopy and contributed an algorithm which 

improves the robustness against noise as well as the segmentation and tracking 

accuracy while reducing the computational cost in comparison to previous similar 

algorithms. The algorithm’s performance was evaluated for real fluorescence 

microscopy images from different biological studies. In this work, watershed 

segmentation was also used as a complementary algorithm to separate touching cells. 

In [53] the problem of segmenting stem cells was addressed through multilevel-sets 

segmentation. Given that the stem cells have complicated morphologies composed by 

blobs (the cellular body) and curvilinear structures, the authors introduced the use of 

multi-scale curvilinear structure detectors for these structural components, and used the 

detected structures as initial cell contours for multi-level sets. Results were validated for 

embryonic and neural stem cells, with more than 90% of cell blobs detected correctly.   

In [54] level sets were used in automated eukaryotic live cell analysis of the four 

phases of the cell cycle during replication, in a high-throughput and high-content 

environment. The tracking problem was addressed here as a spatio-temporal volume 

segmentation problem, and the segmentation of the G2 and S cell phases is made 

using level sets. The developed method allows the automatic analysis of the cell phases 

during extended periods of time without the need of staining the nucleus. A software 

package to analyze relevant characteristics of neurites, like length and complexity, was 

developed in [55]. In this case, both level sets and watershed methods were 
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employed. Here the nuclei were firstly detected using a level sets method with a specific 

initialization, and then the entire cells were segmented using also level sets but with a 

different initialization. In this case, one level set function is used to segment all the cells 

in order to have a better computational efficiency. Then in order to prevent merging of 

different regions during the evolution of the level set function, the topological 

dependence between regions is controlled using a dynamic watershed algorithm. All 

these were integrated in a software system called NeuronCyto that allows analyzing the 

neurites quantitatively.  

In [56] an active mask algorithm is proposed, that combines the advantages of 

active contours, multiresolution, multiscale and region growing. This method was 

applied to fluorescence microscopy images imposing topology preservation. Here an 

increase in computational speed was achieved by segmenting a coarse component first, 

and then making a refined segmentation at finer levels. The algorithm was compared to 

seeded watershed and showed a better performance in segmenting fluorescence 

microscopy images.  

Level sets have demonstrated to possess high ability to segment objects with 

varying intensity and shape, to deal effectively with topological changes, and to deal 

with both 2-D and 3-D image sequences, however some limitations are to be taken into 

account at the moment of selecting this method for its use in an application: the 

algorithm performance is very sensitive to the parameters, requiring tuning for each new 

dataset, there are difficulties to select a good stopping criterion for the curve evolution, 

the speed of convergence is influenced by initialization and the method tends to be time 

consuming. Research on level sets applications to cell segmentation is very active 

currently.  

3.3. Other methods used in cell segmentation 

There are numerous works in which other methods, as well as combinations of those 

described above, have been developed. A first example can be found in [57] in which 

the relative simplicity of cell images allowed segmentation by using upper and lower 

gray intensity thresholds. In [58] a sliding band filter was introduced as a pre-processing 

step for joint segmentation of nuclei and cytoplasm. This filtering allows detecting the 
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convex shapes in order to determine the cells’ nuclei and cytoplasm locations and 

shapes. In [59], a machine learning method was used for segmenting cell images from 

blood and bone marrow. Here three mean-shift procedures [60] are used to find the 

local clustering modes (maximum of the probability density function in the RGB color 

space) associated to the nuclei, mature erythrocytes and background regions. Then a 

support vector machine (SVM) is trained using uniform sampling from the three modes 

to find more nuclei pixels. The nuclei regions are conditionally dilated in the high 

gradient pixels to obtain parts of the cytoplasm pixels, and a second SVM is trained with 

a set of samples from the cytoplasm and the three modes previously determined. Two 

classification modes are obtained using learning and sampling on-line. Finally a last 

SVM is used to segment the image extracting the whole leukocytes. The method is 

compared to specific watershed-based and thresholding-based algorithms and showed 

better values in a confusion matrix which contains the information about the 

classification of pixels. Another example of the use of SVM in segmentation appears in 

[61] for white blood cell segmentation in multispectral images, where segmentation is 

performed at the pixel level. The mean-shift algorithm was used also in [62], in a system 

oriented to measuring the proliferation rate of cancer cells. 

In [63] it is addressed the problem of separating nuclei from background in cell 

images from a p53 immunohistochemistry experiment, as a problem of color cell image, 

two-class segmentation (separating cells from the background). The authors developed 

a supervised, learning-based two-step procedure where thresholding is used after 

converting the images from color space to grayscale. A marker detection method for 

use in watershed segmentation is also presented, to be used in the separation of 

overlapping nuclei. 

In [64] two segmentation methods based in the use of color information were applied 

to immunohistochemical high-resolution images of tissue samples stained with marked 

antibodies. In this application, different stains with inhomogeneous distribution were 

used, and different tissue components were considered, showing morphological 

variations and heterogeneity of the regions to be recognized. The first segmentation 

method uses unsupervised color clustering and is capable of recognizing the cancerous 

areas in the specimen under analysis. The second method uses color separation and 
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morphological processing in order to segment the nuclear membranes of the cancerous 

cells. Nuclei were separated from the background by means of local analysis of the 

intensity distribution in the neighborhood of each cell, and clusters were separated 

using a watershed algorithm. The results were compared to segmentation through 

support vector machines (SVMs) and active contours and showed a better performance, 

comparable to that obtained with manual segmentation. Color information was used in 

[65] for the segmentation of images of fibrosis in the liver. The algorithm works in two 

steps: (a) segmenting Sirius red–stained hepatic fibrosis from cell pixels in the image by 

thresholding the green component, based on enhanced joint clusters of green–blue 

vectors, and (b) separation of irregular fibrosis areas from the hepatocyte nuclei of 

relatively uniform size and shape, using morphological operations. Results showed that 

fibrosis regions were identified with high accuracy. Segmentation of tuberculosis bacilli 

is presented in [28], using a moving K-means clustering employing the green 

component in the RGB color space and the Ry component of the C-Y color space, in 

order to segment the TB bacilli from the background.  

In [66] the use of wavelet transform decomposition was introduced to complement 

the traditional watershed transform segmentation. The problem addressed was the 

accurate segmentation of cell nuclei for studies about 2-D spatial distributions in terms 

of relative and radial distances of fluorescence in situ hybridization (FISH)-labeled DNA 

sequences in inter-phase nuclei. A modified multiscale (wavelet based) technique was 

used for enhancing the image intensity at the boundaries of clustered nuclei (CN). Then 

multiscale thresholding, based on entropy information from multiple scales, was applied 

for handling non-uniform background intensity variations, and statistical pattern 

recognition tools were used to obtain the input parameters required for segmenting cell 

nuclei, combining watersheds and region merging. A comparison of the output from 

automatic classification to manual segmentation was then made, showing good results. 

In [67] a segmentation method is developed to obtain the regions of interest (ROI’s) in 

cell images, oriented to content-based retrieval in diagnosis systems based on cytology 

and histophysiology. The system obtains an adaptive attention window (AAW) whose 

purpose is to determine the rough position of relevant ROI’s. The AAW is obtained 

through a process that uses a luminance map and quad-tree split based on human 
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perception during a pre-processing stage. After this, region-level segmentation is 

performed within the AAW and the final ROIs segmented using background removal 

and region clustering. Similar adjacent regions are merged sequentially if they satisfy 

some conditions. The system was tested by comparison to the mean-shift segmentation 

algorithm and to manual segmentation, showing results closer to the latter, in terms of 

the fraction of actual ROI’s and abnormal ROI’s that were identified. 

An approach for high content screening applications is presented in [68]. Here 

segmentation is performed after noise removal and it is based in thresholding of the 

histogram using a three-class (background, cytoplasm and nucleus) K-means algorithm. 

In this process, the pixels are assigned as elements of the cell surface (nucleus + 

cytoplasm, defining mask M) or to the background. An algorithm to find the cell centers 

as local intensity maxima is applied, which also locates the boundaries between 

adjacent cells as ridges of minimum intensity inside the cell surface. Then a region 

growing algorithm plus some refinements were applied. The seeds were the previously 

defined cell centers and the outer limit was M. The method was tested for four different 

types of cells, and though it is fast and relatively simple, it starts from a set of 

assumptions that could mean limitations to its use: cells should be uniform in size, 

convex and symmetric in shape, stained with a single color band, and the nucleus 

should be as bright as the cytoplasm. An application of thresholding segmentation in 

time-lapse fluorescence microscopy is reported in [69]. In this case, a first segmentation 

step was performed by means of adaptive thresholds, after a preprocessing for image 

enhancement. Then morphological processing was used to eliminate small noise 

artifacts and “holes” in the nuclei. This first segmentation was complemented with the 

use of distance transform and watersheds to separate touching nuclei, a topic to be 

discussed later in this article. The process leads to some oversegmented nuclei that are 

merged by means of a hybrid merging algorithm after the watershed segmentation.  

[70]In  a combined method for segmentation of leukocytes and erythrocytes in blood 

smear images is presented. Here pixel-wise classification combined with template 

matching is used to locate erythrocytes and later a level-set method is used to obtain 

the exact cell contours of leukocyte nucleus and plasma regions as well as erythrocyte 

regions. Some specific problems in segmentation of living cells are addressed in  for [71]
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phase contrast images of bone marrow stromal cells. In this case, it was not possible 

the use of fluorescent markers or histological stains to facilitate the segmentation 

process, and a bright halo appears around cell borders, making difficult the detection of 

edges. A rough segmentation was performed using a standard deviation mask with 

thresholding, which was refined later by means of a mean and median filtering process. 

Results were used for pattern recognition in these images with good results. The main 

limitation of the system was that it does not segment touching cells and tend to fail for 

images with insufficient background area. 

Segmentation in confocal laser scanning microscopy images is addressed in [72]. In 

this case the approach was a statistical segmentation method. The model used for the 

images was a linear mixture of background and fluorescence signals, which unifies the 

description of high- and low- intensity classes and background without the need of 

model selection mechanisms. Then model fitting is made using an expectation-

maximization approach. Satisfactory results were obtained in tests made with Yeast and 

HeLa cells. 

Segmentation of living cells, particularly neutrophils and lymphocytes, was 

addressed using a combination of texture- and contour- based techniques in [73]. A first 

coarse texture-based segmentation is made using the mean and standard deviation of 

the grey level for texture blocks, from which a binary image is obtained through 

thresholding. An image contour is determined using a gradient operator, after some 

morphological operations. The method described is not fully automated, which 

constitutes a limitation. Dynamic programming for cell segmentation was used in [74]. A 

semi-automatic algorithm is presented here for segmenting fluorescence-labeled cells 

or nuclei from 3-D tissue images. Segmentation starts with semi-automatic delineation 

of 2-D objects in a user-selected plane, using dynamic programming (DP). This allows 

locating the border with an accumulated intensity per unit length greater than any other 

possible border around the same object. Then the two surfaces of the object in planes 

above and below the selected plane are found using an algorithm that combines DP 

and combinatorial searching. Segmentation errors are corrected in an interactive way. 

An assessment was made both quantitatively with simulated data and visually, showing 

good results. 
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In [75], segmentation through an algorithm called stable count thresholding (SCT) is 

shown. It is intended to segment nuclear compartments in image stacks of confocal 

laser scanning microscopy, with the purpose of performing objective and quantitative 

analysis of the three-dimensional organization of these objects through statistical 

methods. The SCT algorithm applies thresholding to the three color components in the 

voxels of the image stacks, and then uses a criterion to determine when the voxel count 

is stable for a given threshold. The algorithm was tested using stacks of simulated 

images and fluorescent beads and showed results close to manual segmentation, 

although comparison to other segmentation alternatives is not shown. 

A segmentation method is introduced in [76] to study the three-dimensional 

redistribution of nuclear components in human mesenchymal stem cells. Here to 

segment the details of interest in the probe image, a derivative scale-space method 

oriented to variable and noisy background was used. The image is convolved with 

Gaussian kernels of different widths to produce a Gaussian scale space of the image. 

Then after some manipulation, segmentation by thresholding is applied. Afterwards, 

another algorithm using an iterative threshold selection method is used to segment the 

nuclei. The proposed method in general has the limitation of requiring some human 

intervention in order to separate touching objects. 

A system for the automatic analysis of the Papanicolaou Smears test is presented in 

[77], which is used for screening precursor lesions of cervical cancer. In this case the 

cell nuclei are recognized as the more informative regions, and this determined as the 

main target to achieve an exact segmentation of nuclei. The segmentation method 

developed specially for this application is based in the evaluation of the pixel colors in 

the HSI color space. Membership functions were determined, based in criteria from 

human experts, and using the pixels’ hue and saturation, in order to classify them as 

belonging to the inner or the edge regions of the nuclei. Three color classes were 

considered for this: pink, blue, and transparent. Then the degree of membership or the 

pixels to the nucleus inner and edge regions was determined. The algorithm was 

evaluated in terms of the effectiveness in detecting the different classes of nuclei, 

showing good results. Another example related to image analysis in the Papanicolaou 
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test is presented in [78], where the goal is separating the nuclei from cytoplasm in the 

cell regions. These images are characterized by inconsistent staining, poor contrast, 

and the presence of overlapping cells. The authors developed a segmentation method 

which involves automatic thresholding to separate the cell regions from the background 

and the use of multiscale watershed transform in order to construct a hierarchical 

segmentation tree, which allows identifying the nuclei at different scales and separate 

them from cytoplasm within the segmented cell regions by means of a binary classifier. 

Evaluation of the method was made by comparing the segmentation results to a 

manually constructed ground truth in a database of real images, with good results. 

A method for segmentation of the cell membranes in computerized immuno-

histochemistry is presented in [79]. In this application conventional methods like 

watersheds or level sets cannot be used due to lack of intensity information, and a 

method called “detection of final cellular membranes” is introduced. This method uses 

the (detectable) cell nuclei positions to delineate approximate membranes and the color 

information to make a refinement in the membranes’ positions, calculated as the 

barycenters of brown pixels along a previously defined scan line. Results are evaluated 

by comparing to a manually obtained ground truth, showing better results in comparison 

with active contours. A coarse-fine segmentation method is presented in [80], in which 

information from both brightfield and fluorescence image is used. The coarse 

segmentation is performed either using texture information from the brightfield image or 

intensity thresholding in the fluorescent image. It is intended mainly to produce markers 

for the fine segmentation, which is made through the watershed transform of the 

gradient image. Results are evaluated using neural stem cells and synthetic images, 

both visually and numerically and no comparison to other segmentation alternatives is 

provided. The method has as limitation the need of some interactive user-defined 

parameters. Reference [81] introduces another segmentation method for cell nuclei 

segmentation based in graph-cuts binarization, constrained multiscale Laplacian of 

Gaussian filtering and further refinement based in a graph cuts algorithm. Results were 

evaluated using in vitro and in vivo images of cancer histopathology studies and 

measuring errors like nuclei touching or overlapping in some degree, errors in 
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binarization as well as sensitivity (recall) and positive predictivity (precision), with good 

results although no comparison to other methods is provided.  

Some other examples that include segmentation techniques will be presented briefly 

in the section on current applications. 

3.4. Segmenting touching and overlapping cells 

Segmentation of touching or overlapping objects, as can occur for some classes of 

particles in a more general context, is a challenging problem for automated image 

analysis in various fields. It is a common situation that cells that touch or overlap, 

forming aggregates, appear in microscopy images. Separating the cells clumped in 

aggregates through segmentation is critical in applications like cell identification and 

classification. Segmentation of overlapping cells is usually a subsequent step, after the 

initial segmentation of the image by means of some method that is not capable of 

detecting or decomposing these aggregates. Once the aggregates are found, the task is 

to separate them into their constituent elements. This is performed by means of a 

second segmentation process, in such a way that the features of these elements can be 

analyzed individually.  

A well-known method for segmentation of aggregates in cell images, is based in the 

calculation of the distance transform map of the image obtained as a binary mask, in the 

above mentioned initial segmentation process. After this, the watershed transform is 

applied to the distance map, usually introducing adequate markers. The distance 

transform of a binary image is defined as follows , [13] [24]: for every pixel x in set A, 

 is the distance from x to the complement of A, 

      .                       (15) 

The distance transform of a binary image is usually calculated considering that  is 

the set of 1-valued pixels. It results in a grayscale image, which can be naturally 

segmented through the watershed transform. However, it is a well known phenomenon 

that watersheds can lead to a severe over-segmentation and that a good selection and 

use of markers can prevent this.  
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Typical results of the distance transform calculation are illustrated in Figure 13. Four 

overlapping cells are shown in (a), and the binary image (b) associated to it is obtained 

from a first “coarse” segmentation, which is not capable of separating them. This first 

segmentation step can be performed through any of the standard methods according to 

the characteristics of the addressed problem. The image in Fig. 13(b) is negated to 

obtain the image in (c), the distance transform is obtained from this, and after 

complementing it, the resulting grayscale image is shown in (d), where the darkest 

points inside the cells are those farthest from the white background in (c) and appear as 

minima. The watershed transform is then applied using markers and minima imposition, 

allowing the final result shown in (e). It is worth noting that determining the markers to 

be used during segmentation of the aggregates using the distance and watershed 

transforms is not a trivial task. 

The watershed method for the segmentation of aggregates is applied in [31], which 

used the watershed transformation for segmentation of macrophages. Another 

alternative is shown in [82], where the watershed transform is applied after determining 

markers from aggregating and overlapping templates based on some prior biological 

knowledge, extracted as rules or image samples. A system specifically oriented to the 

cytokinesis-blocked micronucleus (CBMN) test in human peripheral blood lymphocytes 

is presented in [83]. Here a method for detecting seed points of clumps to be used as 

markers was performed by alternate ultimate erosion with four- and eight-neighborhood 

structuring elements. Then the watershed transform was used to separate the 

aggregate components. The performance of the method was evaluated by splitting 

different clumps in CBMN images and showed better results than the traditional 

watershed method. 
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Fig. (13). Separating aggregates using the distance and watershed transforms, (a) original 
image, (b) the binary mask from a first segmentation that does not separate the aggregates, (c) 
complement of (b), (d) complemented distance transform of (c), and (e) final segmentation 
result.  

A more detailed study of the use of markers in the watershed transform to split 

aggregates is presented in [84]. In this work, an adaptive version of the H-minima 

transform was introduced, in order to obtain extended minima of the distance map and 

use them as markers. The outer distance transform was also used here as a means to 

obtain smoother watershed lines. The algorithm was tested for neuronal and Drosophila 

cell images showing over 95% of clumps correctly segmented. In [85], a technique was 

developed, based in the analysis of the morphological scale-space generated by 

iterative erosion and a subsequent determination of cell-specific markers. This method 

is independent of the cell shapes, intensity variation inside the objects and has good 

convergence. The algorithm was tested using synthetic images, light microscope 

images of cell clusters and high resolution, transparent flat bed scanned images of 

stained histological sections of mouse brains, obtaining better results than the traditional 

watershed method when evaluated by comparison to a human-segmented ground truth.  

Splitting cell aggregates in histopathological images is addressed in [86]. A binary 

segmentation map is obtained in which the cell nuclei and the aggregates appear as 

connected components separated from the other regions. These components are then 

classified as aggregates or single cells by smoothing out their boundaries using Fourier 

shape descriptors. Then an iterative splitting algorithm is applied only to the aggregates. 

It is based in detecting previously the most likely concave points in the connected 

components: the aggregate is divided in two by cutting along these points. The method 

was tested on 21 Follicle Lymphoma images considered as challenging, having 

obtained an average error rate of 5.2%.  

[87]In  a method to split cell aggregates based in template matching is presented. A 

template for a single cell is estimated by applying an expectation-maximization 

algorithm to a set of cells that are considered to be correctly segmented. Then the 
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template is iteratively matched to the areas within the aggregates, and the matched 

areas are removed. The algorithm was evaluated by comparing the number of cells 

resulting from splitting the aggregates by means of the algorithm, to the results from a 

human analyst, and showed agreement above 90 % for the specific images used in the 

experiments. In [88] an automatic method is developed for segmentation of touching 

cells, oriented to images from genome-wide RNAi experiments in high content 

screening. A scale-adaptive steerable filter is used firstly to enhance the image, for 

extracting long and thin protrusions on the spiky cells. The method comprises two steps, 

corresponding to nuclei and cytoplasm segmentation. Firstly, nuclei are extracted and 

labeled to initialize cytoplasm segmentation. Then initial contours of cells are found 

using a region growing algorithm. Secondly, a method known as graph cuts-based 

active contours (GCBAC) was used to segment RNAi cells using initial contours. Finally, 

a morphological algorithm is combined with GCBAC to separate tightly clustered cells. 

This method was tested by comparing the results to a manually segmented ground 

truth, and showed a higher precision when compared to watershed segmentation, as 

well as less time consumption and better efficacy than a geodesic active contour 

method.  

An unsupervised Bayesian classification scheme is presented in [89] to separate 

overlapped nuclei. Here the distance map obtained by calculating the distance 

transform of the binary mask associated to the overlapped nuclei is considered as a 

mixture of Gaussians. The parametric expectation-maximization (EM) algorithm is used 

to learn the distribution of the topographic surface and cluster validation is performed to 

determine how many nuclei are overlapped. This method makes use of a priori 

knowledge about the regular shape of the aggregates to obtain more accurate 

segmentation results. The method was tested and compared to other standard methods 

to split cell clumps from samples of cervical cells and mammary invasive ductal 

carcinomas, and exhibited a better segmentation performance.  

[90]Reference  addresses the problem of touching cells in fluorescence microscopy 

in a high content screening application. The method here is based in the analysis of 

contours in terms of concavities and convexities, when represented as linearized lines. 

Special points are defined to represent convex or concave changes in the direction of 
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chain codes between neighboring lines and used to represent the morphological 

structure of the contour regions. A touching model of the clumped objects in the image 

is built and segmentation points are defined from the previous analysis. Finally the 

segmented cells are reconstructed to improve the quality of the results. An evaluation 

was performed using time-lapse fluorescent microscopy images of HeLa cells, with 

results expressed in terms of correct segmentation rate. A qualitative comparison to 

watershed segmentation is presented as well, showing improvements in recognition, 

segmentation and reconstruction of touching cells. A method based in level sets is 

presented in [91] applied to histopathology images. The algorithm has two steps: firstly 

seeds in each cell are found by a method based in single pass voting and mean-shift 

detection. Secondly, the segmentation is completed using level sets with a repulsion 

force to penalize any object overlap, in which the previously detected seeds are used 

for initialization. The method’s performance was evaluated in terms of precision and 

recall using a ground truth created by human experts created, and compared to five 

other algorithms showing better results. A discussion on computational efficiency is also 

provided, including a parallel implementation. 

As can be concluded, there is not a general solution for separation of aggregates in 

cell images, and task specific algorithms are devised in most cases. 

3.5. Evaluating the accuracy of segmentation 

We have seen previously that there are numerous segmentation techniques and that 

so far there is not a general solution for the problem of cell segmentation. Instead, the 

particular characteristics of the cellular microscopy images obtained from a specific 

experiment are determinant in regard of what segmentation method could be the best 

for this case: every method has its own merits and limitations, depending upon the 

application. As a consequence, evaluating the effectiveness of a segmentation method 

for a particular task is of paramount importance. However, it is to be noticed that the 

problem of segmentation evaluation in cellular imaging suffers from the same 

drawbacks of the general problem of algorithm evaluation in image processing, such as 

lack of public image databases, poor information on the implementation of published 

algorithms, low level of standardization of the parameters to be calculated and used 
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when making comparisons between algorithms, and others. This problem is addressed 

in [92], where recommendations are issued to allow reproducibility of the experiments in 

the general field of signal processing. In the case under discussion here, there exist well 

documented supervised and non supervised methods for segmentation evaluation. In 

[93] a comprehensive treatment of this topic can be found.  

Supervised methods use some a priori knowledge, such as a reference image or 

ground truth, with known results of the segmentation process. Ground truth images for 

segmentation evaluation usually are based in the manual segmentation of 

representative images made by human experts. With supervised methods, the 

constituent parts of the segmented images should be labeled and used for a 

quantitative evaluation. The performance is measured by calculating some measure of 

the discrepancy between the considered segmentation and the ground truth 

segmentation. Non supervised methods, on the other hand, are based on the 

computation of some statistics associated to the image.  

Supervised methods are preferred whenever there is an appropriate ground truth 

image, for which datasets for benchmarking should be created. The use of these 

datasets is important because they establish references that allow the researchers to 

make comparisons between methods under a common framework. A general approach 

to the problem of creating benchmarks for segmentation evaluation is shown in [94], 

where a comparison is made between five different image segmentation methods, 

based to their ability to separate perceptually salient structures from the background, 

with a relatively small number of segments. However in this work the images used for 

benchmarking are of general nature and the results are obtained for the specific 

benchmarking measures introduced, therefore the importance of these results for the 

case of cell images is mainly methodological.  

[95]In , a more specific set of images for benchmarking and validation in biological 

image segmentation is presented. Here representative datasets of microbiological 

structures are provided, whose scales range from subcellular level (nm) to tissue level 

(μm).  
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There are various quantitative metrics used to evaluate the quality of segmentation 

algorithms. We will emphasize here those used in supervised evaluation, which is more 

employed in the field of interest. One of them is the Jaccard coefficient, which is a 

similarity measure between the ground truth and the computer-segmented objects,  

                   (16)  

where  means the cardinality of the sets of pixels in the connected components that 

are being compared. In terms of binary images, as those resulting from a segmentation 

process, the Jaccard coefficient is the ratio between the numbers of pixels in the 

intersection and in the union, respectively, of a segmented image object A and the 

corresponding object B in the ground truth image, as illustrated in Figure 14. Here a 

value of 1 indicates a perfect coincidence between the two objects, while a value equal 

to zero means total absence of coincidence, practical cases being in between.  

 
 

 

 
 
 
 

Fig. (14). Illustration of the Jaccard coefficient calculation. 

The Dice coefficient, closely related to the Jaccard coefficient, is another widely 

used measure, defined as 

                      (17) 

A third measure of interest is the Vinet distance [93], which gives a dissimilarity 

measure between two segmentation results. Let  and be 

the two sets to be compared. Then a superposition table  is computed in which 

            (18)                 
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The components C’ that maximize  are conserved and the Vinet distance is 

given by  

   ,                          (19)  

where N is the number of pixels in the segmentation result. 

An example of the use of the Jaccard coefficient can be found in [94]. A method for 

segmentation evaluation in cell images based in the combination of region differencing 

with a method that allows dealing with over- and under-segmented regions is presented 

in [30]. Here a matrix is constructed whose elements reflects the amount of agreement 

between segmented and ground truth regions which takes into account the degrees of 

overlap and non overlap as well as the degree of uncertainties, and finally an overall 

similarity measure is derived. In [96] an object-level metric is presented for 

segmentation evaluation, devoted to measure errors due to over- and under-

segmentation and penalize large deviations in the shape of segmented objects. This 

metric is expressed as a formula that takes into account the number of segmented 

regions, the size and shape of the regions of missed pixels, the size and shape of the 

region of excess pixels, the fraction of nuclei detected and the number of extra 

segmented regions. Some experiments were made using the watershed transform in 

order to study the relation between the segmentation quality of cell nuclei and the 

variations of the metric, showing good results. However this study did not include an 

assessment of the correlation between the metric and visual evaluation by human 

observers.  

A valuable study from a methodological point of view, comparing nine different 

segmentation algorithms applied to two different cell lines and five different sets of 

imaging conditions, is presented in [97]. A-10 rat smooth muscle cells with some 

processing were used to obtain, by fluorescence microscopy, the images used in the 

evaluation, with manually segmented masks used as ground truth. The authors 

introduced a bivariate similarity index metric that evaluates the degree of under- or 

overestimating a cell object. This study included an analysis of the influence of cell edge 

sharpness on segmentation accuracy. The conclusions recognize that the performance 
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of segmentation algorithms depends heavily on cell morphology and imaging 

parameters. Reference [98] presents an evaluation of four segmentation algorithms 

using cumulative probability distribution functions (CDF) in order to reflect the stochastic 

properties of the population of misclassification errors, for quantitative descriptors of cell 

morphology that involve pixel counts. Fluorescence images from A10 rat smooth muscle 

cells and NIH-3T3 fibroblasts were used in this study at three different conditions, from 

which manually segmented masks were obtained as ground truth. The sum of counts of 

false positive and false negative pixels when comparing the segmentation results to the 

ground truth image is divided by the cardinality of the segmented set of pixels, to obtain 

the misclassification percentage for a given object. Then a study based on the CDF of 

these percentages for the whole population of cells is made. The comparison criterion is 

here that the algorithm showing uniformly the largest CDF over the entire domain of the 

CDF is the best one. 

The human limitations to segment cell images manually has led to attempts to create 

simulated ground truth images, a task which can be very complex due to the huge 

diversity of cellular attributes like morphology, texture, etc. to be represented faithfully. 

An example of this can be found in [99] and [100], where basic strategies for modeling 

cell shapes are proposed. Here parametric models can be generated providing specific 

control over the simulated shapes, and leading to realistic simulations when the 

parameters are appropriately estimated from real data. Modifying the model’s 

parameters allows generating cell populations with varying characteristics. Another 

option is learning the shapes from a set of examples. Figure 15 shows an original image 

and a simulated image of erythrocytes in a peripheral human blood smear, synthesized 

using parametric models.  
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Fig. (15). Grayscale images of erythrocytes in peripheral blood smear, (a) simulated image 
using parametric models and (b) a real microscopy image. 

Another work in which a toolbox was created to generate 3D digital phantoms of 

specific cellular components is reported in [101]. This system is also capable of 

introducing in the images the degradation due to optics and electronics. The synthetic 

images were tested using several similarity criteria such as visual comparison, 

histograms of the intensity, central moments, frequency analysis, entropy and 3D 

Haralick features. The simulator uses mainly geometrical concepts and can generate 

three different types of objects: microspheres, HL-60 cell nuclei and granulocyte nuclei. 

As a last example, in [102] a general framework for estimation and simulation was 

created to analyze the role of fluorescence-tagged proteins moving around the Golgi 

apparatus and participating in the intracellular transport. The image sequences were 

considered as formed by two components: the static background and the tagged 

vesicles as moving spots with variable velocities. The former was represented by a 

linear model with parameters estimated from the image sequences, and the latter by a 

network-based dynamical model. This framework can also be applied in general 

problems of evaluating object detection/tracking algorithms in video-microscopy and in 

fluorescence time-lapse microscopy imaging, using the obtained image sequences as 

ground truth. The authors of this paper recommended further validations with biologist 

experts in order to make improvements to the system.  

The simulation of realistic cell images is a real challenge due to the huge diversity of 

situations to be considered, however there is currently a significant activity in the field, 

as can be appreciated from the analyzed references. 

There are three final remarks in this section: firstly, it is to be emphasized that 

segmentation evaluation is mandatory whenever a rigorous proof of the effectiveness of 

segmentation is required for a specific problem in cellular microscopy imaging. 

Secondly, there is currently a lack of benchmarking databases for cell image 

processing. Such databases have proved to be very effective in the field of general 

biological signal and image processing [103], allowing the comparison of results from 

new algorithms against those from previously developed ones, without the need of 
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repeating experiments. There are currently efforts to create dedicated databases for 

some areas in biological microscopy images [104], but there is much work to be done 

yet. Finally, a lack of rigorous statistical treatments in the comparison of results is 

observed. Using hypotheses testing would be very advisable to compare segmentation 

results using evaluation parameters that have inherent randomness, however this has 

not been usually employed in these studies. 

 
4. FEATURE EXTRACTION AND CELL CLASSIFICATION 

Automated analysis in cell imaging generally implies, after appropriate segmentation 

has been performed, that the regions of interest like cells, nuclei, cytoplasm or cell 

organelles had been isolated from the whole image and analyzed individually for 

purposes like anomaly detection, cell classification or pattern recognition tasks in 

general. These tasks are accomplished by means of computational statistical methods 

that are encompassed today in the field known as machine learning [105], a branch of 

artificial intelligence which is widely applied currently in biomedical research. In machine 

learning, the goal is designing algorithms capable of recognizing complex patterns in 

the input data and making decisions, like those associated to classification based on 

these data. A review on cellular image analysis and applications using these techniques 

is presented in [106]. A basic step in analyzing cell images is the extraction of significant 

features that can be used with high effectiveness for the above mentioned purposes. 

These features are to be selected with a task-orientation sense, because using features 

of low discriminating power can mean an increase of the computational load that is not 

rewarded in the quality of the results. The biological meaning of the features is also 

important to interpret the biological processes from which the images were obtained. In 

the case of cells, a wide variety of morphological attributes have been employed for 

various analysis tasks. 

Some traditional features used in cell image analysis are morphometric measures 

taken on the segmentation mask (the binary image obtained after segmentation): area, 

perimeter, eccentricity (usually calculated for an ellipse having the same second 

moment as the region of interest), measures of convexity (convex hull, difference 
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between the object area and the area of its convex hull), centroid’s position and minor 

and major axis length. Other features are measured as attributes of the segmented 

image in terms of mean and peak intensity, intensity variance, texture measurements, 

color attributes in different color spaces and others. Examples can be shown of more 

sophisticated or task-oriented features that have been devised for specific applications 

as in [107], where morphological granulometric features of nuclei were used for 

classification of white blood cells in bone marrow. In [108] a Scale Invariant Feature 

Transform (SIFT) is defined for an application in live-cell tracking. The SIFT features are 

extracted on the basis of successive convolutions with Gaussian functions whose 

results are subtracted to obtain the differences of Gaussians (DoG) in multiple scales. 

Finally the features are obtained as different keypoints which are identified as local 

extreme of the DoG images at different scales. 

A last example is found in [109], which studied the cell structure and dendritic 

arborization from sequential optical micrographs. Some of the main features used in this 

work were the critical radius (radius of the circle with maximum number of 

intersections), the maximum number of intersections, the radial extension (distance 

from the cell’s center to the farthest pixel of the cell skeleton), soma area and fractal 

dimension.  

The analysis of cell images usually ends with the use of statistical modeling and 

classifiers, i.e. the machine learning application that was mentioned before. Different 

classifiers have been used in cellular image analysis, and although this topic is beyond 

the purposes of this review, it is worth to mention some recent examples. Support 

vector machines (SVM) are used for cell recognition in [110]. A neural computing 

system for image classification is presented in [111], this system was used to classify 

fluorescent stained images of lymphocytes and obtained accuracy over 85%. Another 

example is found in [112], where classification of boar spermatozoa in optical phase 

contrast images is addressed, using learning vector quantization (LVQ) to the feature 

vectors obtained from labeling heads as intact or damaged using stains. 

 
5. CURRENT APPLICATIONS 
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We have discussed so far many works that have appeared in the scientific literature, 

mostly with the purpose of illustrating the image processing techniques that have been 

applied. However, and given that in the past decade there have been published literally 

hundreds of papers in the discipline of cellular image processing, a short presentation of 

a number of significant papers on the most recent applications can help the researchers 

in finding useful references for the application at hand. 

Reference[128] deals with the quantification of in vivo tumor invasion and 

vascularization, [129] refers to application of multiple nuclei tracking to cancer cell cycle 

analysis,  is devoted to quantify cytological parameters of malignant lymphocytes, [130]

[131] treats the analysis of the population and spatial distribution of retinal ganglion cells 

in adult albino and pigmented mice, [132] shows a study on colon cancer cell 

morphology, [133] deals with 3D reconstruction of granulomas from transmitted light 

images, [134] is a work on automated cell detection and viability classification of 

suspended mammalian cells in dark field micrographs, [135] uses image processing 

techniques for the analysis of calcium dynamics in glial cells, [136] addresses the 

automated detection of mitosis in stem cell populations in phase-contrast, time-lapse 

microscopy to determine the time and location at which cell division is completed.  

In [137] an analysis is made on computational methods and tools for automated 

digital reconstruction of neurons from images, oriented to the study of the structure and 

function of neuronal cells and networks. Reference [138] deals with the quantification of 

host-microbe interactions in fluorescence microscopy, [139] is on the measurement of 

individual red blood cell motions under high hematocrit conditions using a confocal 

micro-PTV system and [140] uses computer vision for automated microscopy diagnosis 

of malaria. 

Of particular importance are the applications in high content screening. In [141] an 

abstract virtual instrument system is implemented using existing tools that both control 

the microscope and perform image analysis operations. The resulting solution is a 

flexible system for performing dynamic high throughput automatic microscopy. In [142] 
is presented a work related to hepatitis C virus replication complex, [143] is on the 

development of a phototransfection system as a means for performing functional 
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genomics manipulations on individual cells, in [144] a high content analysis method is 

presented for quantifying histone acetylation within a population of cells, [145] presents 

an approach to anti-angiogenic drug discovery, [146] shows a system for screening and 

pre-classification of non-organ specific auto-antibodies in diagnostics regarding 

systemic autoimmune and autoimmune liver diseases, and [147] treats the 

multidimensional quantification of subcellular morphology of Saccharomyces Cerevisiae 

using a specific high-throughput image-processing program. In [148] high-throughput 

time-lapse microscopy is used for identification and clustering of chromosome 

phenotypes in genome-wide RNAi screen, and [149] is devoted to the quantitative 

measure of alterations in the actin cytoskeleton. A segmentation method for 

histopathological images using color-texture information extracted by the local Fourier 

Transform, in an integrated framework that provides also cell clumps splitting, is 

presented in [86]. 

 

6. CONCLUSION 

The application of Digital Image Processing in cellular imaging has received great 

attention in the last few years, providing new tools for improvements in biological 

research. The analysis of the literature reveals that there are some main problems that 

are to be solved in order to implement a DIP application in this field. These were 

identified as  

• Image acquisition. 

• Image restoration. 

o Correction of non uniform illumination  

o Noise filtering 

o Deblurring 

• Image segmentation. 

o Application of a segmentation algorithm 

o Splitting of cell aggregates 

o Evaluation of segmentation accuracy  
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• Feature extraction, image analysis and classification, pattern recognition. 

Image acquisition comprehends the various modalities of microscopy that can have 

an influence on the DIP techniques to be used. In regard to image restoration, 

morphological processing to correct the non uniform illumination and wavelet denoising 

are among the most used and successful techniques, although the use of some others 

have been reported in different papers with good results. Several approaches to 

deblurring exist that have been used in 3D fluorescence microscopy. 

Denoising is an important task for which numerous filtering algorithms exist, and 

among them various alternatives of wavelet denoising have been used frequently in cell 

image processing with good results. Interpolation and super resolution techniques are 

potentially useful techniques due to their relationship with image resolution 

improvements, which is a factor to take into account in many image processing tasks. 

Applications of these techniques were not found in the reviewed literature. 

Segmentation is an essential part of any DIP system in the field of cellular bio-

imaging. There are a great number of segmentation algorithms, and adapting, 

combining of modifying them is usually a need when dealing with a new specific 

imaging problem. The most popular algorithms so far in this field have been the 

watershed transform and level sets, however there are many combinations and also a 

large number of examples in which other approaches have been used.  

Splitting the cell aggregates has been an important part of the segmentation 

process, because in many cases the final analysis is to be carried on isolated cells. 

Morphological image processing and watershed methods are very important in this 

application. 

We emphasize the need of a thorough evaluation of the performance of the 

segmentation algorithms, in order to decide the best choice or find the limits of accuracy 

of a given method. Some metrics have been developed for this purpose, and specific 

examples for cellular bioimaging were provided. The availability of annotated image 

databases that can serve as ground truth for benchmarking has been emphasized, 

because these allow comparing new algorithms with the existing ones without the need 
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of repeating experiments. However in the area of cellular bioimaging there is currently 

lack of such databases, for which some efforts to create them are reported. 

A rigorous statistical evaluation using hypothesis testing is advisable when 

comparing the results of segmentation algorithms, however some lack of this kind of 

treatment can also be observed so far in the literature.  

Feature extraction and pattern recognition appear usually in the final stages of the 

cellular DIP system. Applications can be very diverse, according to the specific study at 

hand. Among them, high content screening systems are playing currently a growing role 

in biological research, and a large proportion of the effort in developing new DIP 

systems for cellular imaging fall in this category 

Given the importance acquired by biotechnology, drug development and biological 

research in general, as well as the huge diversity of cellular images that exist, it is to be 

expected that the field of DIP applications in cellular imaging will grow, with a fruitful 

interaction in which new algorithms developed for other applications will be introduced 

in this field. It is also to be expected that cellular imaging itself will pose new challenges 

to DIP, that will foster the development of this discipline. 
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