

Departamento de Ingeniería Hidráulica

TRABAJO DE DIPLOMA

Diseño de la red de alcantarillado de los repartos Ciudamar y Monterrey.

Autor: Elianys Cárdenas Martínez

Tutor: Lic. Mirely Gonzáles García

Academic Departament of Hydraulic Engineering

DIPLOMA THESIS

Design of the sewerage network of the Ciudamar and Monterrey distributions.

Author: Elianys Cárdenas Martínez

Thesis: Lic. Mirely Gonzáles García

Santa Clara , June, 2019 Copyright©UCLV Este documento es Propiedad Patrimonial de la Universidad Central "Marta Abreu" de Las Villas, y se encuentra depositado en los fondos de la Biblioteca Universitaria "Chiqui Gómez Lubian" subordinada a la Dirección de Información Científico Técnica de la mencionada casa de altos estudios.

Se autoriza su utilización bajo la licencia siguiente:

Atribución- No Comercial- Compartir Igual

Para cualquier información contacte con:

Dirección de Información Científico Técnica. Universidad Central "Marta Abreu" de Las Villas. Carretera a Camajuaní. Km 5½. Santa Clara. Villa Clara. Cuba. CP. 54 830

Teléfonos.: +53 01 42281503-1419

DEDICATORIA

Dedico este trabajo de diploma a toda mi familia, en especial a mi madre Midoris Martínez Días por estar conmigo en el transcurso de estos 5 años de carrera, creo que sin ella jamás habría logrado emprender el camino y ser la persona que soy; a mi padre, por el apoyo incondicional, a mi novio, por estar conmigo en los buenos y malos momentos, a mis tutores por ser guía de mis ideas, en fin, a todos los que me brindaron una mano cundo la necesité.

AGRADECIMIENTOS

Quiero agradecer a toda mi familia y a todas esas personas que de una forma u otra han estado presente en el transcurso de mi carrera, en especial a:

Mis padres Midoris y Francisco, por su amor incondicional.

Mis tíos Yareli y Dany, que me ayudaron en todo momento.

Mis primas Yaimi y Daniela por darme apoyo a seguir adelante

Mis abuelos Ramona y Angel, por ser protectores y siempre escucharme.

Mi novio Danny, por apoyarme en todo momento.

Mis tutoras Mirely y Lumey, por la paciencia y dedicación.

Mis amigas del cuarto que durante estos cinco años fueron parte de mi familia, en especial a Fadia y Lianet que como las hermanas que no tuve.

Al claustro de profesores que me brindaron sus conocimientos y experiencia profesional.

RESUMEN

El objetivo fundamental de la presente investigación es diseñar el sistema de alcantarillado para los repartos Ciudamar y Monterrey, para evacuar las aguas residuales sanitarias, teniendo en cuenta parámetros hidrológicos, topográficos y geológicos característicos de la zona. Para el diseño de la red, se emplea el programa SewerUp el cual permite obtener resultados óptimos en cuanto a pendientes, diámetros y excavaciones, obteniendo planos definitivos para la ejecución de la obra. Se diseñaron dos variantes las cuales dan solución al problema planteado y se realiza una comparación técnica y económica de las mismas.

ABSTRACT

The main objective of the present investigation is to design the sewer system for the Ciudamar and Monterrey distributions, to evacuate sanitary wastewater, taking into account hydrological, topographic and geological parameters characteristic of the area. For the design of the network, the SewerUp program is used which allows obtaining optimal results in terms of slopes, diameters and excavations, obtaining definitive plans for the execution of the Word. Two variants were designed which provide a solution to the problem and a technical and economic comparison of them is made.

TABLA DE CONTENIDOS

DEDICATORIA	i
AGRADECIMIENTOS	ii
RESUMEN	iii
INTRODUCCIÓN	1
CAPÍTULO 1. REVISIÓN BIBLIOGRÁFICA Y ESTUDIO DE ANTECEDENTES	5
1.1. Generalidades sobre el alcantarillado	5
1.1.1 Modelos de Configuración de Alcantarillados	9
1.2. Softwares y regulaciones para el diseño de Sistemas de Alcantarillado	. 12
1.2.1 Descripción de Softwares para diseño y modelación de alcantarillado	. 12
1.2.2 Normas y regulaciones presentes en el diseño de alcantarillado	. 17
1.3. Características físico – geográficas de los repartos Ciudamar y Monterrey	. 18
CAPÍTULO 2. MATERIALES Y MÉTODOS	. 20
2.1. Datos iniciales para el cálculo	. 20
2.2. Diseño de la red con el empleo del software SewerUp	. 22
CAPITULO 3. RESULTADOS DE LA INVESTIGACIÓN	. 32
3.1. Resultados de las variantes	. 32
3.2. Comparación técnica de las variantes de diseño de la red de alcantarillado.	. 33
3.3 Comparación económica de las variantes de diseño de la red de alcantarillado	.ok
	. 34
CONCLUSIONES Y RECOMENDACIONES	. 36
Conclusiones	. 36
Recomendaciones	. 36
REFERENCIAS BIBLIOGRÁFICAS	. 37

BIBLIOGRAFÍA	
ANEXOS	
ANEXOS	¡Error! Marcador no definido.

INTRODUCCIÓN

En todo proceso de transformación encaminado a mejorar el nivel de vida de los habitantes de determinada región, juegan un papel importante las políticas de desarrollo, que tienen por objetivo promover un cambio positivo en el modo de vida de los pueblos. Entre los proyectos que contribuyen a realizar estos cambios en las comunidades, están aquellos destinados a satisfacer las necesidades básicas de cada uno de sus pobladores. (Campos, 2009)

El alcantarillado se considera uno de los servicios básicos en cualquier ciudad del mundo. Las primeras redes de alcantarillado se crearon para evacuar el agua de la lluvia, junto con el crecimiento poblacional y el elevado índice de enfermedades surgió la necesidad de evacuar el residual doméstico.

El acceso a un saneamiento adecuado urbano y rural es condición imprescindible para lograr una mejor calidad de vida, incluida la protección a la salud y a la calidad de las aguas terrestres. En general, el saneamiento se aplica mediante la colección y disposición de las aguas residuales utilizando redes de alcantarillado, fosas sépticas, letrinas sanitarias y sistemas de tratamiento mediante plantas tradicionales o compactas y lagunas de estabilización.(INRH, 2017)

El alcantarillado más antiguo del cual se tiene referencia fue construido en Nippur (India) alrededor del año 3750 A.C. Existen diferentes relatos y descripciones de las alcantarillas de la antigüedad, quizás las más conocidas sean las de la antigua Roma, de París y de Londres, estas se dirigían fundamentalmente a la recolección de las aguas de lluvia. Las aguas usadas por los humanos comenzaron a ser conectadas a las alcantarillas en 1815 en Londres, en Boston a partir de 1833, y en París, solo a partir de 1880.

El primer sistema moderno de alcantarillado se diseñó en Hamburgo en 1842, en el cual se utilizaron las más modernas teorías de la época, se tuvo en cuenta las condiciones topográficas y las necesidades reales de la comunidad. Este hecho significó un espectacular avance, los principios fundamentales en que se basó el

proyecto no se generalizaron hasta inicios de los 1900, y siguen vigentes en la actualidad.

En Cuba la cobertura de alcantarillado resulta baja inclusive en el sector urbano, donde predominan las fosas sépticas como forma válida de disposición final de los residuales, siempre que la construcción de las mismas cumpla con las normas técnicas para su ejecución, lo que en la práctica no siempre se cumple.

Del volumen de residuales evacuado a través de los sistemas de alcantarillado existentes, sólo recibe tratamiento antes de su disposición al medio el 32%. Esto se realiza mediante algunas plantas y sobre todo a través de lagunas de estabilización cuya explotación y mantenimiento es inestable, el mal funcionamiento de estos sistemas está generalizado en todos los organismos, constituyendo un riesgo para la salud humana y ambiental. (INRH, 2017)

Además de su insuficiencia, la mayoría de los sistemas de alcantarillado existentes en el país están urgidos de acciones de rehabilitación y de elevar los niveles de mantenimiento. Para la solución de las obstrucciones que frecuentemente presentan estos sistemas por insuficiente diámetro, el paso del tiempo y la carga que reciben, se cuenta con un escaso parque de equipos y herramientas especializadas para los mantenimientos manuales. (INRH, 2017)

En el caso específico de la capital del país existen diferentes problemas con el alcantarillado sanitario, uno de los municipios que se encuentra afectado es San Miguel del Padrón en el cual se lleva a cabo diferentes labores de rehabilitación y nuevos diseños. Los repartos Ciudamar y Monterrey, pertenecientes a este municipio, vierten sus residuales crudos al río Martín Pérez el cual posee como destino final la bahía de La Habana.

Debido a las características de la Bahía de ser un entorno de agua cerrada el agua no se renueva fácilmente con el agua del mar. La contaminación originada de las aguas residuales de los hogares e industrias se descargan en la Bahía sin un tratamiento adecuado, y se produce la suciedad que se acumula en el fondo del mar. En los últimos años la calidad del agua de la Bahía ha empeorado y los niveles de nutrientes son lo suficientemente altos para mostrar un fenómeno de eutroficación. (JICA, 2004)

Como parte del saneamiento de la bahía de La Habana y para evitar los efectos nocivos de los vertimientos de residuales sin tratamiento a esta, se rehabilitan, diseñan y construyen diferentes redes de alcantarillado en función de disminuir la carga contaminante de los residuales.

La presente investigación posee como **Objeto de estudio** el Diseño de obras hidráulicas y como **Campo de investigación** el Diseño de las redes de alcantarillado.

Problema de investigación

La calidad del residual aportado por los repartos Ciudamar y Monterrey no cumple con lo establecido en la norma cubana 27:1999 sobre vertimiento de aguas residuales a las aguas terrestres y al alcantarillado, lo que trae consigo un alto grado de carga contaminante que tributa al río Martín Pérez, el cual posee como destino final la bahía de La Habana.

El **objetivo general** en el que se sustentará la investigación será proponer un sistema de alcantarillado para los repartos Ciudamar y Monterrey a partir de un diseño óptimo de la red que permita disminuir la carga contaminante que tributa al río Martín Pérez.

Como solución adelantada a este problema se tiene la siguiente **hipótesis**: Si se realiza el diseño óptimo de la red de alcantarillado de los repartos Ciudamar y Monterrey, con ayuda del programa SewerUp a partir de lo establecido en las normas cubanas, se contará con una propuesta que garantice mayor satisfacción a la población y cumpla con los requerimientos medioambientales.

Como objetivos específicos los siguientes:

- 1. Delimitar el estado del arte referido al tema de investigación.
- Caracterizar demográficamente la zona de estudio (repartos Ciudamar y Monterrey).
- 3. Determinar el software a utilizar en el diseño.
- 4. Determinar los datos iniciales para el cálculo.

Valor práctico de la investigación:

Se pondrá en manos de los proyectistas el diseño de ingeniería básica con los elementos fundamentales para poder realizar el proyecto ejecutivo de la red de alcantarillado de los repartos Ciudamar y Monterrey.

Capítulo 1: Revisión bibliográfica y estudio de antecedentes.

En este capítulo se hace una búsqueda y recopilación de la bibliografía directa o indirectamente relacionada con el tema de estudio, referente a los antecedentes existentes sobre el tema de investigación.

Capítulo 2: Materiales y métodos.

En este capítulo se propone el diseño de la red de alcantarillado de los repartos Ciudamar y Monterrey a partir de la topografía correspondiente, realizado con ayuda del programa SewerUp y lo establecido en las normas cubanas.

Capítulo 3: Resultados de la investigación.

En este capítulo se evalúan los resultados obtenidos en el capítulo anterior.

Para el logro de esta investigación se trazaron las siguientes tareas de investigación:

- Selección del software a emplear
- Obtención de los datos topográficos
- Obtención de os datos para el calculo

CAPÍTULO 1. REVISIÓN BIBLIOGRÁFICA Y ESTUDIO DE ANTECEDENTES.

En el desarrollo de las localidades urbanas, sus servicios en general se inician con un precario abastecimiento de agua potable y van satisfaciendo sus necesidades con base en obras escalonadas en bien de su economía. Como consecuencia se presenta el problema del desalojo de las aguas servidas o aguas residuales. Se requiere así la construcción de un sistema de alcantarillado sanitario para conducir las aguas residuales que produce una población a su destino final. (Agua, 2007)

1.1. Generalidades sobre el alcantarillado.

Concepto y definición

La Organización Panamericana de la Salud, 2005, define que un sistema de alcantarillado es un conducto de servicio público cerrado, destinado a recolectar y transportar aguas residuales que fluyen por gravedad libremente bajo condiciones normales. (Salud, 2005)

El alcantarillado funciona por efecto de la gravedad. Las tuberías se conectan en ángulo descendente, desde el interior de los predios a la red pública, desde el centro de la comunidad hacia el exterior de la misma. Cada cierta distancia se debe construir pozos de registro verticales para permitir el acceso a la red con fines de mantenimiento. (Agua, 2007)

Los sistemas de alcantarillado se encargan de conducir las aguas de desecho y pluviales captadas en los sitios de asentamiento de las conglomeraciones humanas para su disposición final. (CEDEX, 2007)

Descripción e importancia del alcantarillado

Según refiere la Comisión Nacional del Agua (CNA), 2007, en la mayoría de las ciudades se tiene la necesidad de desalojar el agua de lluvia para evitar que se inunden las viviendas, los comercios, las industrias y otras áreas de interés. Además, el hombre requiere deshacerse de las aguas que han servido para su aseo y consumo. (Agua, 2007)

Para abastecer de agua a las poblaciones, se cuentan con tecnologías para la captación, almacenamiento, tratamiento y distribución del agua mediante complicados sistemas de conducción y obras complementarias. Sin embargo, una vez que las aguas procedentes del abastecimiento son empleadas en las múltiples actividades humanas, son contaminadas con desechos orgánicos, inorgánicos y bacterias patógenas. Después de cierto tiempo, la materia orgánica contenida en el agua se descompone y produce gases con olor desagradable, además, las bacterias existentes en el agua causan enfermedades. La disposición o eliminación de las aguas de desecho o residuales debe ser atendida convenientemente para evitar problemas de tipo sanitario. (Agua, 2007)

Tipos de sistemas de evacuación

Los sistemas de evacuación se construyen según dos sistemas típicos:

1. El combinado, unitario o de canalización única.

Según el sistema combinado el alcantarillado recoge todas las aguas tanto las domésticas, industriales y las de infiltración subterránea, como las pluviales, mediante un conducto único como se muestra en la figura 1.1.

Figura 1.1. Sistema combinado, unitario o de canalización única, (tomada de internet)

2. El separativo, separado o de canalización doble.

En el sistema separativo existe una red que recoge sólo las aguas residuales domesticas e industriales mientras que el agua de lluvia será recolectada por otra red de conductos independientes como se muestra en la figura 1.2.

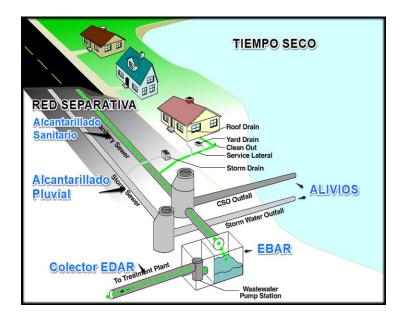


Figura 1.2. Sistema separativo, separado o de canalización doble, (tomada de internet)

El sistema de alcantarillado sanitario está constituido por obras para:

- Captación o recolección de residuos líquidos.
- Transporte o conducción.
- Tratamiento (si fuera necesario).
- Disposición final (ver figura 1.3).

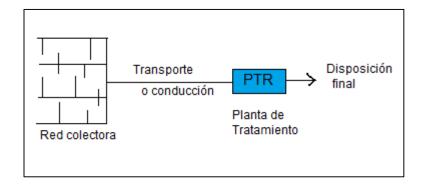


Figura 1.3. Componentes de un sistema de alcantarillado sanitario. (elaboración propia)

Tipos de conductos:

Los conductos que forman los sistemas de evacuación van variando sus dimensiones de menor a mayor en la medida en que nos alejamos del inicio. Estos conductos son típicos y para un sistema de alcantarillado sanitario son los siguientes:

a) Entronques

Es el conducto que recoge el albañal desde el sistema de plomería de un edificio o inmueble y lo conduce hasta el conducto correspondiente en la calle.

b) Laterales

Se denomina lateral al conducto de la calle que recibe los aportes del albañal de varios entronques domiciliarios. El diámetro mínimo en ellos será de 200 mm, con una pendiente mínima tal que garantice velocidades en el flujo que impidan la sedimentación de sólidos en el sistema (velocidades autolimpiantes).

c) Cloacas secundarias.

Son aquellas que reciben los aportes de dos o más laterales. El diámetro mínimo es también 200 mm, manteniendo las velocidades autolimpiantes.

d) Cloacas maestras o principales.

Son los que reciben el aporte de dos o más cloacas secundarias. También el diámetro mínimo es de 200 mm y la pendiente mínima debe garantizar las velocidades autolimpiantes.

e) <u>Inceptoras o colectores</u>

Las cloacas inceptoras son aquellas que reciben los aportes de varias maestras principales. Por lo general son cloacas de mayor tamaño, colocadas paralelas a los cursos naturales de agua o de drenaje y desagüe.

f) Cloacas de reboso o aliviaderos.

Se denomina así a las cloacas que conducen los aportes en exceso a las capacidades de los conductos del sistema o en caso de emergencia.

Consisten en conductos relacionados con vertederos que comienzan a funcionar en cuanto el volumen de las aguas o el nivel del gasto ordinario ha sido elevado a valores predeterminados.

g) Emisarios

Los emisarios son cloacas de gran tamaño que recogen el aporte total del sistema colector de una o varias cuencas y lo conducen a la planta de tratamiento o al punto de disposición final.

1.1.1 Modelos de Configuración de Alcantarillados.

Modelos de configuración de atarjeas.

No existe una regla general para el trazo de una red de alcantarillado, ya que se debe ajustar casi siempre a la topografía de cada lugar. A continuación, en las figuras 1.4 y en la tabla 1.1se presentan algunos tipos de trazos que pueden ser utilizados como guías:

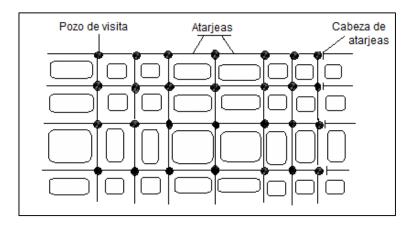


Figura 1.4. Trazo de la red de atarjeas en bayoneta. (Autor)

Tabla 1.1 Ventajas y desventajas de los modelos de configuración de atarjeas.

Tipos de trazos	de trazos Descripción Ventajas		Desventajas	
Trazo en bayoneta	Inicia en una cabeza o inicio de atarjea, tiene un desarrollo en zigzag o en escalera.	Reduce el número de cabezas de atarjeas, permite un mayor desarrollo de las atarjeas, logra aprovechar adecuadamente la capacidad de cada uno de los conductos.	El trazo requiere de terrenos con pendientes más o menos estables y definidas.	
Trazo en peine	Se forma cuando existen varias atarjeas con tendencia al paralelismo, empiezan su desarrollo en una cabeza de atarjea descargando su contenido en una tubería común de mayor diámetro perpendicular a ellas.	Garantiza aportaciones rápidas y directas de las cabezas de atarjeas a la tubería común de cada peine, y de estas a los colectores. Se tiene una amplia gama de valores para las pendientes de las cabezas de atarjeas, que resulta útil en el diseño cuando la topografía es muy irregular.	Corto desarrollo que tienen las atarjeas iniciales antes de descargar a un conducto mayor, trabajan por debajo de su capacidad, ocasionando que se desaproveche parte de dicha capacidad.	
Trazo combinado	Corresponde a una combinación de los dos trazos anteriores y a trazos particulares obligados por los accidentes topográficos de la zona.			

Modelos de configuración para Colectores, Interceptores y Emisores.

Para recolectar las aguas residuales de una localidad, se debe seguir un modelo de configuración de bayoneta, peine o combinado para el trazo de los colectores, interceptores y emisores el cual fundamentalmente depende de:

- a) La topografía predominante.
- b) El trazo de las calles.
- c) El o los sitios de vertido.
- d) La disponibilidad de terreno para ubicar la planta o plantas de tratamiento.

Diferencias entre el saneamiento en zonas rurales y en zonas urbanas.

Se presenta la siguiente tabla con características de estas zonas:

Tabla 1.2 Características entre zonas rurales y zonas urbanas.

Zonas urbanas	Zonas rurales
Densidades altas de población. Muchas	Densidades bajas de población. Pocas
personas en espacios reducidos.	personas por kilómetros cuadrados o
	hectáreas.
Viviendas continuas generalmente en	Distancias largas entre viviendas
Residenciales o Urbanizaciones	inclusive llegando a alcanzar varios
horizontales o verticales.	kilómetros.
Costos de espacios y terrenos altos.	Costos de espacios y terrenos bajos.
Metro cuadrado de construcción de alto	Metro cuadrado de construcción
precio.	generalmente de bajo precio.
Aguas residuales ordinarias en viviendas	Aguas residuales ordinarias en viviendas
o industriales en algunos casos.	o agrícolas con alta carga de materia
	orgánica.
Alta disponibilidad de servicios técnicos	Baja disponibilidad de servicios técnicos
especializados.	especializados.

La densidad de población y distancia entre viviendas es quizá la principal razón de elección de un sistema de saneamiento. Una densidad baja con distancias largas entre viviendas aumenta en gran medida el costo de la construcción y mantenimiento de un alcantarillado sanitario. Esto por lo general también incluye una gran cantidad de terrenos que no tienen construcción encima por lo cual un sistema de tratamiento individual con drenaje se vuelve atractivo. (Capacitación ASADA)

En contraparte, una densidad de población alta significa que varias personas viven muy cercanas unas a otras, esto hace que el costo del alcantarillado sanitario se vuelva atractivo al no cubrir largas distancias. Sin embargo, en esta condición se da una escasez de terreno sin construcción, razón por la cual NO se recomienda construir sistemas de saneamiento individual por vivienda. (Capacitación ASADA)

Otros factores como el tipo de agua residual o la disponibilidad de servicios técnicos pueden influir en la escogencia de un sistema de saneamiento. Es común encontrar en proyecto agrícolas sistemas de tratamiento colectivos anaeróbicos por las condiciones de carga del agua residual. En estos proyectos se dan grandes cargas de agua residuales en periodos de tiempo irregulares a lo largo del año. En el caso de aguas industriales, estas presentan una gran cantidad de sustancias químicas que no son fácilmente tratables por sistemas convencionales, por lo cual requieren de procesos químicos que generalmente son añadidos a los sistemas de saneamiento. (Capacitación ASADA)

1.2. Softwares y regulaciones para el diseño de Sistemas de Alcantarillado.

1.2.1 Descripción de Softwares para diseño y modelación de alcantarillado.

A partir del desarrollo tecnológico actual se han ido presentando una gran variedad de softwares que optimizan el diseño y modelación de alcantarillados, a continuación, se presentaran algunos ejemplos de estos programas.

Akua

Es un software para diseño de redes de alcantarillado sanitario y drenaje pluvial. Sirve tanto para realizar nuevos diseños, como para modelar sistemas existentes. En tiempos mínimos se pueden obtener diseños óptimos y planos definitivos listos para la

ejecución de la obra, no complica al proyectista con excesivas variables y opciones, sino que asume las tecnologías, unidades de medida y formulaciones comúnmente empleadas y automatiza gran parte de los procesos de entrada de datos (ver figura 1.5).

Figura 1.5. Software Akua.

HYDRA

Es un software para el análisis de sistemas de alcantarillados municipales. Puede modelar tuberías existentes, así como diseñar nuevas tuberías, define parámetros de diseño como: rangos de pendientes admisibles, relaciones d/D, velocidades de flujo y profundidades.

Brinda resultados que le permiten optimizar las políticas operativas actuales y futuras de su sistema de alcantarillado, mejorando la capacidad hidráulica. Identifica las zonas de baja capacidad del sistema. Tiene una gran integración con Sistemas de Información Geográfica permitiendo intercambiar datos con productos AutoCAD de AutoDesk (DWG) entre otros (ver figura 1.6).



Figura 1.6. Software HYDRA.

APyS

Alcantarillado pluvial y sanitario, es una novedosa y potente herramienta para el ingeniero civil especializado en el área sanitaria, que ofrece un eficiente sistema de cálculo de redes de alcantarillado pluvial y/o sanitario (ver figura 1.). Este programa se ajusta a la norma RAS2003, además facilita la introducción de datos, libera de gran cantidad de cálculos matemáticos como la capacidad y cotas de cada uno de los colectores.

Figura 1.7. Software APyS.

CIVIL ADS

Módulo para análisis y diseño de redes de drenaje sanitario y pluvial urbano. Contiene extensa ayuda en español y rutinas útiles para el cálculo geométrico y cuantificación de elementos de redes de alcantarillado (ver figura 1.8).

Analiza redes sanitarias mediante método de Harmon, obtiene volúmenes de obra en excavaciones y relleno, optimiza dímetros de tuberías.

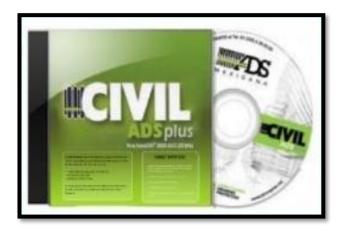


Figura 1.8. Software Civil ADS.

ALCONW

Es un programa de computación que realiza Diseños y Simulaciones del comportamiento hidráulico de redes de Alcantarillado Sanitario.

Este programa cuenta con diversas utilidades que le permiten al usuario incorporar la información básica de la red desde archivos de Exel, generar planos, tanto en platas como en perfiles de la red, facilita la estimación de cantidades de obras, genera reportes de resultados completamente compatibles con Exel.

No tiene límite en cuanto al tamaño de la red que puede procesarse, las condiciones hidráulicas de la red se calculan mediante las fórmulas de Manning (ver figura 1.9).

Figura 1.9. Software AlconW.

SEWERUP

Es un software para diseño de redes hidráulicas, fácil de usar, dispone de todas las prestaciones profesionales posible. Ha sido concebido para ser de uso intuitivo y sencillo (ver figura1.10).

Sirve tanto para realizar nuevos diseños de sistemas de alcantarillado, como para modelar sistemas existentes. En tiempos mínimos se pueden obtener diseños óptimos y planos definitivos listos para la ejecución de la obra.

Para la realización de este trabajo se utilizará este programa ya que el mismo es un software libre, fácil de manejar entre todos los demás, con muchas facilidades de modelación del alcantarillado y resultados muy útiles, además se utiliza en la Empresa de Investigaciones y Proyectos Hidráulicos Villa Clara.

El programa permite, además:

- Lectura de base cartográfica en formato vectorial (dxf, shp) o raster (jpg, bmp)
- Distribución visual de los nodos y tramos.
- Dibujo de mapas planimétricos y curvas de nivel.
- Cálculo automático de longitudes, áreas y gastos.
- Diseño óptimo de las pendientes y diámetros.
- Vistas en Zoom, Paneos y 3D.

- Cálculo de los volúmenes de obra.
- Resultados tabulados en Excel.
- Dibujo de planta general y perfiles en AutoCAD.
- Posibilidad de trabajar con varios subsistemas al mismo tiempo.
- Facilidades para la simulación de redes existentes.

Figura 1.10. Software SewerUp

1.2.2 Normas y regulaciones presentes en el diseño de alcantarillado.

En los países donde se diseñan redes y sistemas de alcantarillado existen diversas normas y regulaciones por las cuales se rigen las entidades y personas encargadas de estos diseños. En Cuba también existen estas normas que brindan importantes datos y especificaciones para tener en cuenta en los diseños. La normas y regulaciones que se usan para el diseño de sistemas de alcantarillado son:

NC 1239: 2018 Especificaciones para el diseño y construcción de alcantarillado sanitario y drenaje pluvial urbano.

NC 27: 1999 Vertimiento de aguas residuales a las aguas terrestres y al alcantarillado. Especificaciones.

Procedimiento de alcantarillado sanitario 201 – PRO – 04 Revisión 4. EIPH.VC

Regulación de Proyecto de Alcantarillado Sanitario y Drenaje Pluvial Urbano RP No. 1087.

Resolución No 204: 2014 Reglamento de Seguridad y Salud en el trabajo para la construcción civil y montaje.

RC-3104: 1989 Ejecución de obras, pruebas parciales de presión y fuga de tuberías en obras

RC-3005: 1981 Movimiento de tierra, excavaciones para zanjas.

RC-3010: 1981 Movimiento de tierra, rehínchos en zanjas para conductos y cimentaciones.

1.3. Características físico – geográficas de los repartos Ciudamar y Monterrey.

El Municipio San Miguel del Padrón, al cual pertenecen los repartos Ciudamar y Monterrey se ubica geográficamente al Sur- sureste de la Bahía de La Habana. El área norte se debate entre los ríos Luyanó y Martín Pérez que desembocan en la ensenada de Guanabacoa, de la propia bahía. Tiene una extensión territorial de 25,7 kilómetros cuadrados. Es el séptimo municipio en superficie y el sexto más poblado (ver figura 1.11).

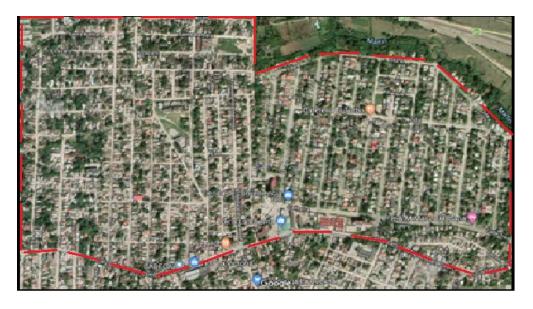


Figura 1.11. Vista aérea de los repartos Ciudamar y Monterrey.

Relieve.

El relieve en la zona es semi ondulado. El municipio forma parte del contexto geográfico de Occidente y está incluido en el grupo de las Alturas Habana-Matanzas.

Vegetación.

La vegetación es baja presentando algunos árboles en parques y zonas aledañas, está formada por especies foráneas y abundan la palma real, la ceiba y árboles frutales.

Climatización de la zona.

El clima en la provincia es tropical con dos períodos definidos invierno y verano. De mayo a noviembre las temperaturas medias mensuales oscilan entre los 24°C a 28°C con una media anual de 22°C, de diciembre al mes de abril las temperaturas medias mensuales son de 28°C a 32°C con media anual de 30°C, la temperatura media del territorio y de la región oscilan entre los 24°C y 28°C para todo el territorio la humedad relativa media anual es de un 79%, los vientos predominantes y de mayor porciento de frecuencia son de dirección Noreste.

Hidrografía

La hidrografía del territorio se caracteriza por algunos ríos de poco caudal. El río Luyanó nace en los límites de San Miguel con el Cotorro, tiene 13 kilómetros hasta su desembocadura y siete afluentes. El Martín Pérez, otra de las corrientes fluviales del municipio, nace en las Alturas del Diezmero y tiene 7 kilómetros de longitud; ambos desembocan en la Bahía de La Habana. Dos cuencas hidrográficas bordean al municipio, la cuenca de Martín Pérez por el este con una extensión de 13,67 kilómetros y la cuenca del río Luyanó por el oeste con 28,42 kilómetros.

20

CAPÍTULO 2. MATERIALES Y MÉTODOS.

El diseño corresponde al alcantarillado sanitario de los repartos Ciudamar y Monterrey

los cuales vierten sus aguas al rio Martín Pérez que tiene como cuerpo receptor la

bahía de La Habana, se realizaran dos variantes de diseño con datos aportados como

la topografía, población, dotación, periodo de diseño y otros que son de gran

importancia para el diseño.

2.1. Datos iniciales para el cálculo.

Microlocalización

Esta obra se encuentra ubicada en el municipio San Miguel de Padrón, abarca los

repartos Ciudamar, Luyanó Moderno, Monterrey y La Granja.

Norte: 364 100 a 364 500

Este: 364 600 a 365 500

Topografía

En la zona donde estarán ubicados los colectores las cotas oscilan entre los 12,00 y

los 50.00 metros sobre el nivel medio del mar.

El comportamiento topográfico del terreno conlleva a que las soluciones que se

adopten en el área urbana tengan una concepción de conducción y evacuación de los

residuales en su mayoría por gravedad.

Características de los residuales

Los residuales generados por los habitantes en la zona, son residuales líquidos de

carácter doméstico, así como aquellos que se deriven de la actividad socio económico

propia de la comunidad. Bajo estas condiciones se definen los residuales líquidos

generados en la zona como albañal con altas concentraciones de materia orgánica.

La materia orgánica en las aguas albañales está constituida en su mayor parte por

sustancias inestables, alguna como la urea en tan alto grado que sufren profundas

modificaciones en los propios conductos de evacuación. La materia orgánica no está

completamente oxidada y comienza a experimentar procesos modificadores, que

hacen cambiar el contenido y condición del albañal con el tiempo.

Denominación	u/m	Valor
Población diseño	hab.	23 277
Periodo de diseño	Años	30
Tiempo de servicio	Н	24

Lppd

l/s

l/s

360

77,59

1,80

139,66

Dotación

Tabla 2.1. Parámetros hidráulicos empleados en el diseño.

Tabla 2.2. Poblaciones especificas por repartos.

Aporte sanitario promedio (Q prom)

Coeficiente de simultaneidad (M)

Aporte sanitario diseño (Q diseño)

Reparto	Población (hab)
Monterrey	7795
Ciudamar	15482

A partir de la topografía recibida como dato se ubican en una capa específica todos aquellos puntos con propiedades de coordenadas X Y Z. Se crea un fichero con extensión DXF que se exporta como base para trabajar en el programa SewerUp (ver figura 2.1).



Figura 2.1 Topografía para el diseño.

Importación de la topografía en formato dxf al software.

En SewerUp se selecciona la capa XYZ, se genera otra ventana donde se verifica las coordenadas y la elevación que sean correctas, se selecciona la ventana donde los nodos sean actualizados automáticamente (ver figura 2.2).

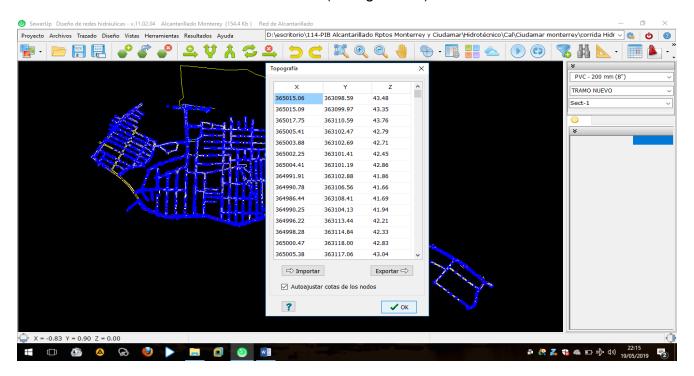


Figura 2.3 Revisión de las cotas en SewerUp.

2.2. Diseño de la red con el empleo del software SewerUp.

Variante 1

La red de alcantarillado está constituida por nodos que representan registros de inspección, limpieza, cambio de pendiente o de diámetro, y por tramos de tuberías que unen los nodos. Para el trazado de la misma se marca sobre la base cartográfica la posición de cada nodo y el programa pide la cota topográfica, como ya importamos la topografía aparece un valor resultante de la interpolación de las cotas y luego se inserta el tramo que une los nodos y así sucesivamente para todos los nodos y tramos. Hay que tener en cuenta que en un nodo pueden entrar varios tramos, pero solo uno puede salir (ver figura 2.4)

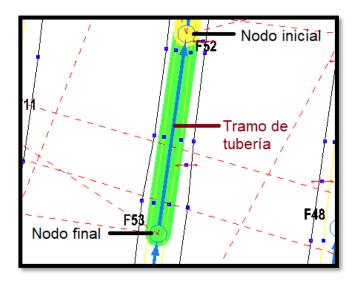


Figura 2.4 Representación de los nodos y tramos.

En el diseño se decidió colocar fosos de bombeo en los lugares con cotas más bajas. El primer foso de bombeo se colocó en Ciudamar en calle 2da entre R de Cárdenas y la Calzada de San Miguel del Padrón, el segundo se colocó en Luyanó Moderno en calle 1era entre Avenida Obrero y Autopista y el tercero se colocó en Las Granjas.

Antes de proceder al diseñó de la red se introducen datos generales como tensión tractiva mínima, relación h/D y pendiente mínima en tramos iniciales, por los valores establecidos en la Norma Cubana para el diseño de alcantarillado 1239 del 2018 como se muestra en la figura 2.4.

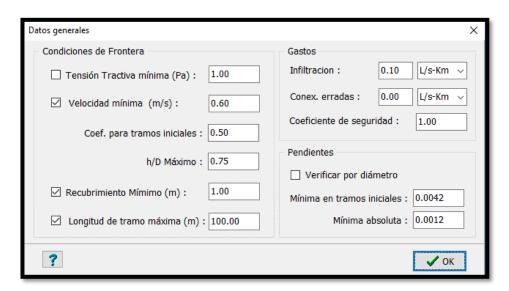


Figura 2.4 Distribución de los datos generales, SeweUp.

Mediante estos parámetros se obtienen las condiciones de fronteras que debe cumplir el diseño, así como datos necesarios para la estimación de los caudales.

Otro de los datos son las características de las tuberías, será necesario completar los valores de coeficiente de rugosidad de Manning, pendiente mínima, ancho de zanja, tipo de sección y diámetro para cada tubería teniendo en cuenta lo establecido en la Norma Cubana para el diseño de alcantarillado 1239 del 2018 (ver figura 2.5).

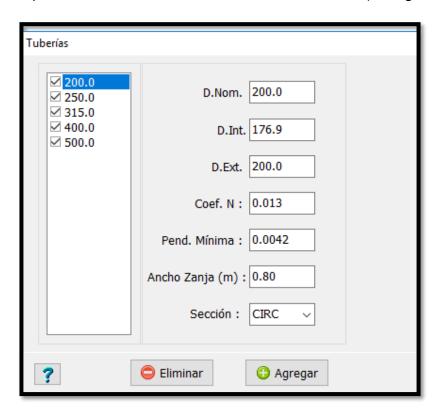


Figura 2.5 Datos específicos para cada tubería.

De este surtido el programa extrae las combinaciones para optimizar el diseño, es decir, lograr las menores pendientes y menores diámetros que cumplan las restricciones de fronteras impuestas en los Datos Generales.

SewerUp tiene dos opciones para el cálculo del área, por tramos o el área total. Se realiza por tramos cuando son poblaciones y lugares pequeños. En este caso como los repartos son muy grande se realiza marcando el perímetro del lugar donde se está trabajando y te da un área total (ver figura 2.6), el programa internamente le asigna a

cada tramo un área y una población. Por la experiencia práctica de los especialistas se conoce que los resultados son exactos.

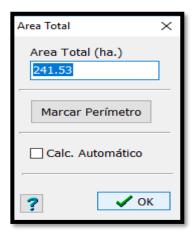
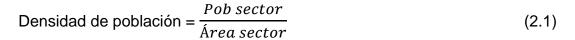
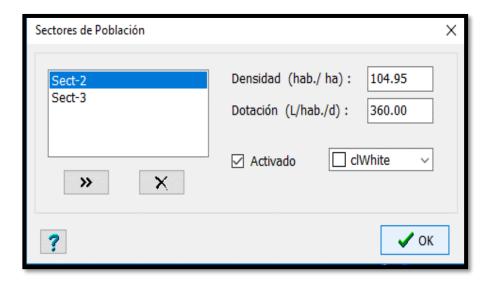




Figura 2.6 Área total.

Para continuar el diseño SewerUp tiene como opciones trabajar toda el área en un sector o dividirla en la cantidad de sectores que sean necesarios, en este caso se realizaron dos sectores ya que se conoce que existen dos colectores principales de la planta de tratamiento de aguas residuales existente a los cuales tributan todo el residual de estos repartos. A cada sector se le asigna la densidad de población y la dotación como se muestra en la figura 2.7 y 2.8.

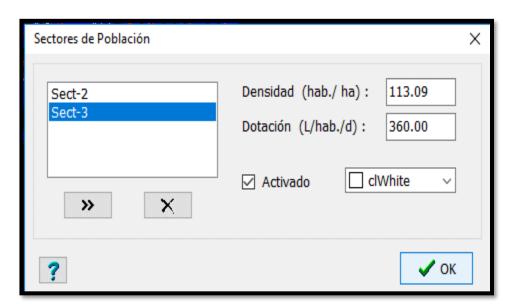
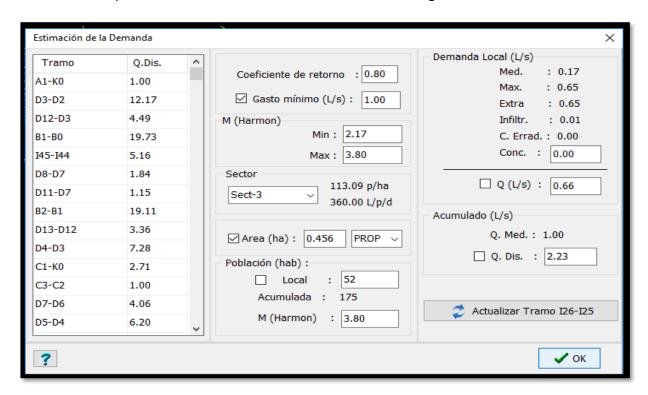



Figura 2.7 Densidad de población y dotación para el sector 2 (Ciudamar).

Figura 2.8 Densidad de población y dotación para el sector 3 (Monterrey).

Luego SewerUp permite estimar los caudales de acuerdo a la información disponible o a las normas y preferencias del proyectista. En todo caso es necesario asociar el sector al cual pertenece el tramo como se muestra en la figura 2.8.

Figura 2.9 Estimación de la demanda.

Se diseñaron tres fosos de bombeo. Para el diseño de los mismos se definen los parámetros (diámetro, material, longitud y coeficiente C) de la tubería de impulsión y en base al gasto y la cota de entrada, el programa calcula el punto de operación de las bombas (ver figuras 2.10, 2.11 y 2.12).

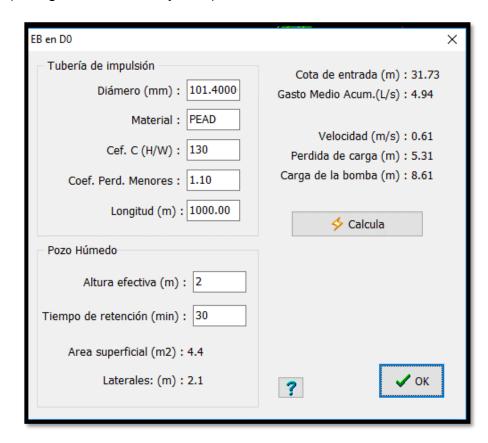


Figura 2.10 Parámetros del foso de bombeo en Las Granjas.

Figura 2.11 Parámetros del foso de bombeo en Luyanó Moderno.

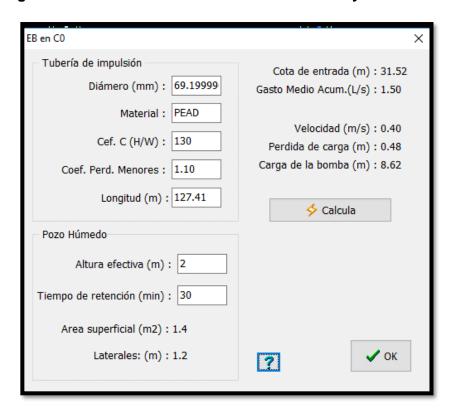


Figura 2.12 Parámetros del foso de bombeo en Ciudamar.

El resultado del diseño es la asignación de las pendientes hidráulicas a cada colector de forma tal que se obtengan diámetros y excavaciones mínimas y se cumplan con todas las restricciones impuestas.

El programa brinda opciones para visualizar el diseño ya sea en AutoCAD, creando un DXF o como vista previa en el mismo. Realiza perfiles, muestra la vista en planta de la red y representa el nodo, la cota del terreno, la cota invertida, así como pendientes, longitudes y diámetro de cada tramo, como se muestra en las figuras 2.13, 2.14 y 2.15.

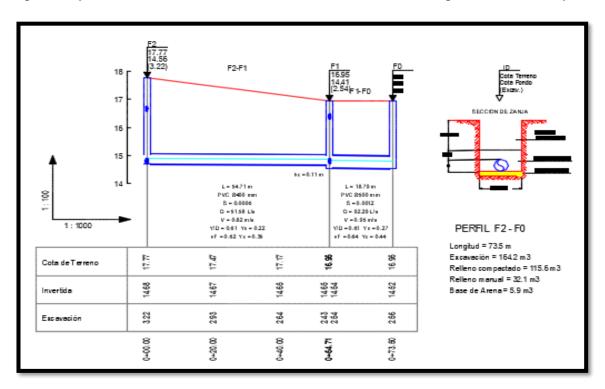


Figura 2.13 Perfil de la tubería F2-F0.

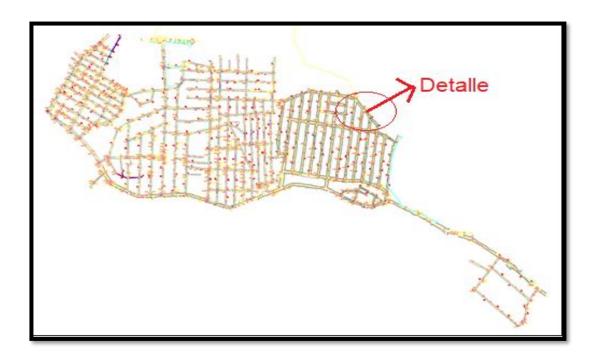


Figura 2.14 Vista en planta de la red de alcantarillado.

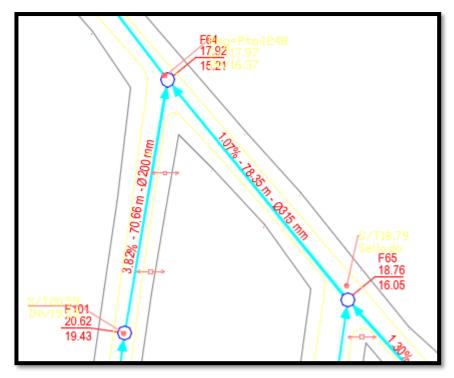


Figura 2.15 Detalle de la vista en planta de la red de alcantarillado.

Variante 2

Este diseño se realizó a partir del mismo procedimiento del diseño para la variante 1 con los mismos datos y topografía. Se decidió cambiar el foso de bombeo en Las Granjas para la carretera Santa María del Rosario; donde estaban los otros dos fosos de bombeo se colocaron nodos y tuberías.

CAPÍTULO 3. RESULTADOS DE LA INVESTIGACIÓN.

En este capítulo se exponen resultados de la investigación y se realiza una comparación técnica- económica de las dos variantes de diseño de la red de alcantarillado de los repartos Ciudamar y Monterrey.

3.1. Resultados de las variantes.

A continuación, en las figuras 3.1 y 3.2 se muestran las vistas en planta de las dos variantes de diseño del alcantarillado de los repartos Ciudamar y Monterrey obtenidos a partir de la simulación mediante el software SewerUp.

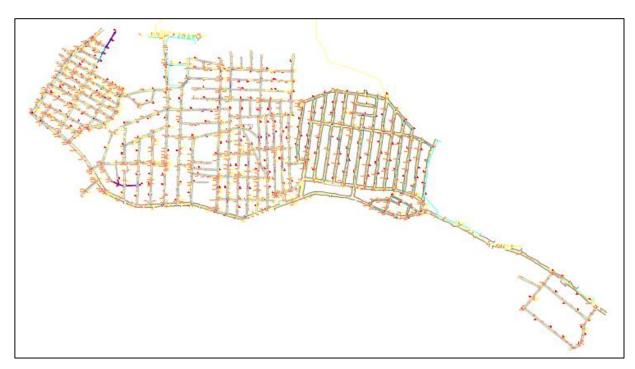


Figura 3.1. Vista en planta del alcantarillado. Variante 1.

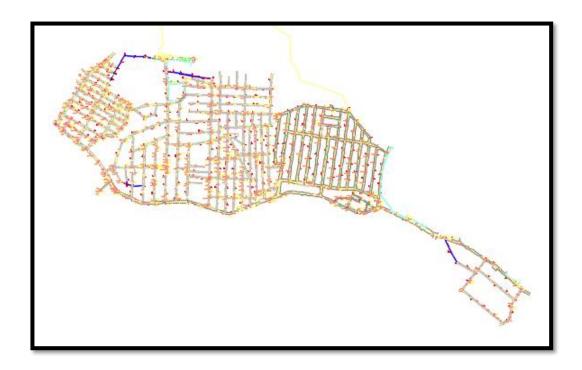


Figura 3.2. Vista en planta del alcantarillado. Variante 2.

Las tablas con las características de los tramos de cada variante y perfiles se muestran en los anexos.

3.2. Comparación de las variantes a partir de los parámetros técnicos.

En la tabla 3.1 se puede observar una comparación de las dos variantes de diseño, a partir de los parámetros técnicos obtenidos en la simulación con el software SewerUp.

Valores Totales	Variante 1	Variante 2
Cantidad de Tramos	430 u	435 u
Fosos de bombeo	3 u	1 u
Longitud	26312.07 m	27388.06 m
Área	241.53 ha.	241.53 ha.
Población	23277 hab	23277 hab
Colchón de arena	2104.97 m ³	2191.04 m ³
Relleno Compactado	22439 77 m ³	24273 49 m ³

3562.75 m³

2761.98 m³

Relleno Manual

Tabla 3.1 Comparación de las variantes de diseño.

Excavación	38012.87 m ³	40994.37 m ³

3.3 Comparación de las variantes a partir de sus costos.

Los costos de tuberías y fosos de bombeo se calcularon a partir del Índice técnico económico para la elaboración de obras hidráulicas de la empresa de Investigaciones y Proyectos Hidráulicos de Villa Clara.

Para el cálculo de los costos totales de las tuberías se utilizó la ecuación 3.1 para las dos variantes de diseño.

$$Y = 2.4565X^{0.7504} \tag{3.1}$$

Donde:

Y = Costo total en, \$/m.

X = Diámetro nominal, en mm.

Tabla 3.2 Datos y resultados del cálculo de los costos de las tuberías.

	Var	iante 1			Var	iante 2	
D (mm)	Longitud (m)	Costo (\$/m)	Costo total (\$)	D (mm)	Longitud (m)	Costo (\$/m)	Costo total (\$)
200	22555.32	130.92	2952942.4	200	22774.18	130.92	2981140.2
250	1724.24	154.78	266739.93	250	2063.73	154.78	319424.13
315	1153.89	184.09	212419.61	315	1381.24	184.09	25427.47
400	746.57	220.24	164424.58	400	602.51	220.24	132696.8
500	132.06	260.38	34375.22	500	566.40	260.38	147479.23

Para el cálculo de los costos totales de los fosos de bombeo se utilizó la ecuación 3.2 para las dos variantes de diseño.

$$Y = 7820X^{0.5601} \tag{3.2}$$

Donde:

Y = Costo total en, \$.

X = Caudal de la estación de bombeo, en L/s.

Tabla 3.3. Datos y resultados del cálculo de los fosos de bombeo.

	Variante	1	Variante 2			
Foso de bombeo			Diámetro (mm)	Caudal (L/s)	Costo total (\$)	
1	1.50	9813.76	1	7	23256.59	
2	29.78	52330.15	-	-	-	
3	4.94	19132.13	-	-	-	

A continuación, se presenta la tabla 3.4 con los costos totales del diseño de la red de alcantarillado.

Tabla 3.4. Costos totales de la red de alcantarillado.

Variantes	Costo total de las tuberías (\$)	Costo total de los fosos de bombeo (\$)	Costo total de la obra (\$)	
1	3630901.86	81276.04	3712177.90	
2	3606167.79	23256.59	3629424.38	

A partir de la comparación técnica y económica de las dos variantes de diseño obtenidas por la simulación con el software SewerUp se puede concluir que las dos variantes son factibles en cuanto al diseño ya que le dan solución al mismo.

CONCLUSIONES Y RECOMENDACIONES

Conclusiones

- 1-Se obtuvieron dos variantes de diseño para el sistema de alcantarillado de los repartos Ciudamar y Monterrey que optimizan el uso de la red para permitir disminuir la carga contaminante que tributa al río Martín Pérez.
- 2-La utilización del software SewerUp permitió realizar dos variantes de diseño las cuales le dan solución al problema de alcantarillado de los repartos Ciudamar y Monterrey
- 3-Se realizaron dos variantes de diseño y a partir de comparar sus parámetros técnicos y económicos, se determinó que la variante más factible es el número dos.

Recomendaciones

- 1- Realizar un análisis económico más profundo del sistema de alcantarillado, tomando en cuenta los costos de operación y mantenimiento.
- 2- Realizar tantas adaptaciones como sean necesarias a la hora de ejecutar el diseño.

REFERENCIAS BIBLIOGRÁFICAS

AGUA, C. N. D. 2007. Manual de Agua Potable, Alcantarillado y Saneamiento.

CAMPOS, F. R. 2009. Historia del saneamiento de Valladolid.

CAPACITACION ASADA, S. D. A. R. DIFERENCIAS ENTRE EL SANEAMIENTO URBANO Y EL RURAL

CEDEX 2007. Guía Técnica sobre redes de saneamiento y drenaje urbano.

INRH 2017. Política Nacional del Agua.

JICA, A. D. C. I. D. J., GRUPO DE TRABAJO DEL ESTADO PARA EI SANEAMIENTO, CONSERVACIÓN Y DESARROLLO DE LA BAHÍA DE LA HABANA (GTE) EN LA REPÚBLICA DE CUBA 2004. ESTUDIO DEL DESARROLLO DEL ALCANTARILLADO Y EL DRENAJE PLUVIAL EN LA CUENCA TRIBUTARIA DE LA BAHÍA DE LA HABANA EN LA REPÚBLICA DE CUBA 5.

SALUD, O. P. D. L. 2005. Guía para el Diseño de Tecnologías de Alcantarillado.

BIBLIOGRAFÍA

AGUA, C. N. D. 2007. Manual de Agua Potable, Alcantarillado y Saneamiento.

CAMPOS, F. R. 2009. Historia del saneamiento de Valladolid.

CAPACITACION ASADA, S. D. A. R. DIFERENCIAS ENTRE EL SANEAMIENTO URBANO Y EL RURAL

CARPIO, H. A., N.C.G. SIGARAN, AND K.C.T. HERNANDEZ 2011. PROPUESTA DE DISEÑO DEL DRENAJE PLUVIAL, ALCANTARILLADO SANITARIO Y PLANTA DE TRATAMIENTO PARA LAS AGUAS RESIDUALES DEL CASCO URBANO Y COLONIAL" LA ENTREVISTA" DEL MUNICIPIO SAN CAYETANO ISTEPEQUE, DEPARTAMENTO DE SANVICENTE.

CEDEX 2007. Guía Técnica sobre redes de saneamiento y drenaje urbano.

FRITZE, L. C. D. L. P. junio, 2016. Diseño y Simulación de una Red de Drenaje Pluvial en la Zona Centro-Oeste de Trinidad.

INRH 2017. Política Nacional del Agua.

JICA, A. D. C. I. D. J., GRUPO DE TRABAJO DEL ESTADO PARA EL SANEAMIENTO, CONSERVACIÓN Y DESARROLLO DE LA BAHÍA DE LA HABANA (GTE) EN LA REPÚBLICA DE CUBA 2004. ESTUDIO DEL DESARROLLO DEL ALCANTARILLADO Y EL DRENAJE PLUVIAL EN LA CUENCA TRIBUTARIA DE LA BAHÍA DE LA HABANA EN LA REPÚBLICA DE CUBA 5.

NORMALIZACIÓN, O. N. D. 1999. VERTIMIENTO DE AGUAS RESIDUALES A LAS AGUAS TERRESTRES Y AL ALCANTARILLADO. ESPECIFICACIONES. .

NORMALIZACIÓN, O. N. D. 2018. ESPECIFICACIONES PARA EL DISEÑO Y CONSTRUCCIÓN DE ALCANTARILLADO SANITARIO Y DRENAJE PLUVIAL URBANO

PREZI.COM. 2018. *Modelos (softwares) para el diseño de redes de alcantarillado.* [Online]. [Accessed].

SALUD, O. P. D. L. 2005. Guía para el Diseño de Tecnologías de Alcantarillado.

SIAPA 2014. Lineamientos Técnicos para Factibilidades.CAP.3 Alcantarillado Sanitario.

ANEXOS

Anexo 1 Variante 1.

Tabla 1. Características de los tramos alcantarillado.

		Diámetro	Longitud	Pendiente	Velocidad	
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
G156-G155	PEAD	200	45.94	0.0111	0.72	0.14
G155-G1	PEAD	200	97.17	0.0066	0.63	0.17
G154-G153	PEAD	200	38.85	0.0536	1.25	0.1
G153-G152	PEAD	200	50.4	0.0066	0.6	0.16
G152-G2	PEAD	200	50.4	0.0086	0.68	0.15
G151-G150	PEAD	200	92.04	0.0302	1.03	0.11
G150-G52	PEAD	200	92.04	0.0158	0.9	0.15
G149-G53	PEAD	200	84.71	0.0169	0.84	0.13
G148-G54	PEAD	200	81.36	0.0111	0.72	0.14
G147-G146	PEAD	200	58.26	0.004	0.5	0.18
G146-G145	PEAD	200	59.44	0.0491	1.22	0.1
G145-G144	PEAD	200	59.44	0.0051	0.6	0.19
G144-G143	PEAD	200	51.74	0.0104	0.83	0.19
G143-G55	PEAD	200	51.75	0.0166	1.04	0.18
G142-G141	PEAD	200	83.68	0.0302	1.03	0.11
G141-G140	PEAD	200	65.33	0.0312	1.08	0.12
G140-G113	PEAD	200	75.81	0.0408	1.34	0.13
G139-G138	PEAD	200	69.63	0,1125	1.62	0.08
G138-G137	PEAD	200	64.65	0.0034	0.48	0.19
G137-G134	PEAD	200	64.68	0.0372	1.25	0.13
G136-G135	PEAD	200	53.24	0.0319	1.05	0.11
G135-G134	PEAD	200	51.65	0.0489	1.22	0.1
G134-G132	PEAD	200	38.1	0.0328	1.41	0.17
G133-G132	PEAD	200	97.1	0.0511	1.23	0.1
G132-G131	PEAD	200	95.12	0.0229	1.41	0.23
G131-G130	PEAD	200	60.95	0.0226	1.45	0.25
G130-G114	PEAD	200	60.95	0.0059	0.92	0.37
G129-G128	PEAD	200	98.65	0.0399	1.13	0.1
G128-G127	PEAD	200	98.68	0.0635	1.5	0.11
G127-G126	PEAD	200	80.98	0.0421	1.44	0.15
G126-G125	PEAD	200	80.98	0.0026	0.58	0.33

Tabla 2. Características de los tramos alcantarillado. Continuación.

_		Diámetro	Longitud	Pendiente	Velocidad	v/5
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
G125-G116	PEAD	200	78.33	0.0229	1.33	0.21
G124-G123	PEAD	200	63.31	0.004	0.5	0.18
G123-G122	PEAD	200	63.31	0.023	0.93	0.12
G122-G121	PEAD	200	47.25	0.066	1.47	0.1
G121-G120	PEAD	200	30.07	0.0688	1.56	0.11
G120-G119	PEAD	200	17.97	0.0618	1.54	0.12
G119-G118	PEAD	200	17.73	0.0468	1.43	0.13
G118-G117	PEAD	200	71.41	0.0429	1.5	0.15
G117-G116	PEAD	200	71.41	0.0199	1.22	0.2
G116-G115	PEAD	200	74.15	0.0262	1.72	0.29
G115-G114	PEAD	200	78.42	0.0131	1.37	0.36
G114-G113	PEAD	315	55.47	0.0025	0.85	0.4
G113-G55	PEAD	315	78.4	0.0157	1.72	0.27
G112-G111	PEAD	200	88.26	0.0652	1.34	0.09
G111-G110	PEAD	200	64.7	0.0543	1.32	0.1
G110-G109	PEAD	200	64.7	0.0397	1.31	0.13
G109-G108	PEAD	200	65.48	0.0238	1.19	0.17
G108-G107	PEAD	200	65.52	0.0466	1.6	0.16
G107-G106	PEAD	200	69.07	0.0334	1.5	0.19
G106-G59	PEAD	200	69.07	0.0094	1	0.28
G105-G104	PEAD	200	50.89	0.0725	1.39	0.09
G104-G103	PEAD	200	47.66	0.0774	1.43	0.09
G103-G102	PEAD	200	65.17	0.0055	0.6	0.18
G102-G101	PEAD	200	65.2	0.0058	0.68	0.21
G101-G100	PEAD	200	66.33	0.0418	1.47	0.15
G100-G99	PEAD	200	66.33	0.0918	2.05	0.14
G99-G98	PEAD	200	76.5	0.0256	1.39	0.2
G98-G60	PEAD	200	77.16	0.0375	1.66	0.2
G97-G96	PEAD	200	93.03	0.0656	1.35	0.09
G96-G95	PEAD	200	65.45	0.0604	1.38	0.1
G95-G94	PEAD	200	65.48	0.0215	1.07	0.15
G94-G93	PEAD	200	65.91	0.0402	1.44	0.15
G93-G92	PEAD	200	65.91	0.0554	1.71	0.15
G92-G91	PEAD	200	58.98	0.0383	1.57	0.18

Tabla 3. Características de los tramos alcantarillado. Continuación.

		Diámetro	Longitud	Pendiente	Velocidad	V/5
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
G90-G61	PEAD	250	50.08	0.0188	1.45	0.22
G89-G63	PEAD	200	82.39	0.0169	0.84	0.13
G88-G83	PEAD	200	29.61	0.0203	0.89	0.12
G87-G86	PEAD	200	74.63	0.0764	1.42	0.09
G86-G85	PEAD	200	83.16	0.0262	1.03	0.12
G85-G84	PEAD	200	45.64	0.0809	1.65	0.11
G84-G83	PEAD	200	34.03	0.0773	1.7	0.12
G83-G64	PEAD	200	83.2	0.0304	1.38	0.18
G82-G81	PEAD	200	46.48	0.1334	1.72	0.08
G81-G80	PEAD	200	76.63	0.0433	1.16	0.1
G80-G79	PEAD	200	49.91	0.0611	1.43	0.11
G79-G78	PEAD	200	36.79	0.0739	1.62	0.11
G78-G77	PEAD	200	66.64	0.004	0.63	0.26
G77-G65	PEAD	200	66.64	0.003	0.6	0.31
G76-G75	PEAD	200	47.82	0.06	1.3	0.09
G75-G74	PEAD	200	37.81	0.0066	0.6	0.16
G74-G73	PEAD	200	14.13	0.0066	0.6	0.16
G73-G72	PEAD	200	84.12	0.0195	0.97	0.14
G72-G71	PEAD	200	95.89	0.0182	1.08	0.18
G71-G68	PEAD	200	74.42	0.0087	0.89	0.24
G70-G69	PEAD	200	53.58	0.0177	0.85	0.12
G69-G68	PEAD	200	96.91	0.0059	0.6	0.17
G68-G65	PEAD	200	41.28	0.0021	0.6	0.44
G67-G66	PEAD	200	73.62	0.004	0.5	0.18
G66-G65	PEAD	200	77.85	0.0058	0.6	0.17
G65-G64	PEAD	250	43.63	0.0014	0.6	0.53
G64-G63	PEAD	250	69.33	0.0012	0.62	0.69
G63-G62	PEAD	250	73.18	0.0083	1.32	0.4
G62-G61	PEAD	250	36.83	0.0263	2.02	0.3
G61-G60	PEAD	315	21.03	0.0861	3.37	0.2
G60-G59	PEAD	315	59.41	0.0098	1.64	0.38
G59-G58	PEAD	400	46.66	0.0012	0.78	0.53
G58-G57	PEAD	400	30.77	0.0012	0.78	0.53
G57-G56	PEAD	400	44.61	0.0012	0.79	0.54
G56-G55	PEAD	400	51.42	0.0012	0.79	0.54

Tabla 4. Características de los tramos alcantarillado. Continuación.

	54 - 1 - 2 - 1	Diámetro	Longitud	Pendiente	Velocidad	v/5
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
G55-G54	PEAD	400	57.04	0.0012	0.87	0.76
G54-G53	PEAD	400	58.46	0.0161	2.34	0.35
G53-G52	PEAD	400	58.08	0.0088	1.89	0.41
G52-G2	PEAD	500	58.1	0.0148	2.26	0.27
G51-G40	PEAD	200	84.63	0.0412	1.14	0.1
G50-G41	PEAD	200	82.07	0.0395	1.13	0.1
G49-G48	PEAD	200	92.02	0.0654	1.34	0.09
G48-G47	PEAD	200	90.52	0.0066	0.66	0.19
G47-G46	PEAD	200	60.1	0.0286	1.21	0.15
G46-G45	PEAD	200	61.02	0.0403	1.46	0.15
G45-G44	PEAD	200	72.42	0.0042	0.69	0.3
G44-G43	PEAD	200	15.13	0.004	0.69	0.31
G43-G42	PEAD	200	77.38	0.0226	1.35	0.22
G42-G41	PEAD	200	56.4	0.02	1.34	0.24
G41-G40	PEAD	200	57.26	0.0027	0.69	0.46
G40-G38	PEAD	200	60.28	0.0136	1.32	0.33
G39-G38	PEAD	200	52.35	0.004	0.5	0.18
G38-G37	PEAD	250	50.53	0.0015	0.6	0.47
G37-G36	PEAD	250	50.57	0.0015	0.61	0.49
G36-G35	PEAD	250	45.67	0.0014	0.6	0.51
G35-G34	PEAD	250	32.05	0.0014	0.6	0.53
G34-G33	PEAD	250	57.27	0.005	0.99	0.37
G33-G32	PEAD	250	58.29	0.0357	2.03	0.23
G32-G3	PEAD	250	60.41	0.02	1.67	0.27
G31-G28	PEAD	200	62.29	0.0528	1.25	0.1
G30-G29	PEAD	200	53.75	0.0424	1.16	0.1
G29-G28	PEAD	200	56.03	0.0066	0.6	0.16
G28-G27	PEAD	200	72.65	0.0302	1.24	0.15
G27-G26	PEAD	200	50.7	0.0247	1.22	0.17
G26-G4	PEAD	200	50.67	0.0053	0.74	0.27
G25-G5	PEAD	200	59.05	0.0393	1.13	0.1
G24-G10	PEAD	200	97.41	0.0197	0.88	0.12
G23-G22	PEAD	200	69.37	0.0783	1.43	0.09
G22-G21	PEAD	200	69.37	0.0085	0.67	0.15
G21-G20	PEAD	200	55.98	0.0104	0.79	0.17

Tabla 5. Características de los tramos alcantarillado. Continuación.

is	NA . 1	Diámetro	Longitud	Pendiente	Velocidad	v/5
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
G20-G19	PEAD	200	97.9	0.006	0.74	0.24
G19-G18	PEAD	200	97.87	0.0149	1.11	0.22
G18-G17	PEAD	200	79.91	0.0035	0.7	0.35
G17-G15	PEAD	200	59.86	0.0513	1.88	0.19
G16-G15	PEAD	200	43.06	0.0251	0.96	0.11
G15-G11	PEAD	200	56.45	0.0422	1.84	0.22
G14-G13	PEAD	200	58.9	0.004	0.5	0.18
G13-G12	PEAD	200	36.16	0.004	0.5	0.18
G12-G11	PEAD	200	54.72	0.0497	1.27	0.1
G11-G10	PEAD	200	57.33	0.0016	0.6	0.62
G10-G7	PEAD	250	59.97	0.0236	1.67	0.24
G9-G8	PEAD	200	50.19	0.004	0.5	0.18
G8-G7	PEAD	200	50.22	0.0066	0.6	0.16
G7-G6	PEAD	250	55.86	0.0264	1.81	0.25
G6-G5	PEAD	250	55.97	0.0143	1.48	0.3
G5-G4	PEAD	250	58.47	0.0133	1.48	0.32
G4-G3	PEAD	250	58.44	0.0079	1.31	0.42
G3-G2	PEAD	315	59.38	0.0276	2.37	0.29
G2-G1	PEAD	500	24.35	0.0012	0.99	0.7
G1-G0	PEAD	500	30.83	0.0012	0.99	0.7
F115-F114	PEAD	200	89.67	0.0619	1.32	0.09
F114-F113	PEAD	200	61.08	0.0354	1.16	0.12
F113-F112	PEAD	200	61.08	0.0226	1.09	0.15
F112-F111	PEAD	200	61.08	0.0054	0.71	0.25
F111-F110	PEAD	200	61.08	0.0473	1.62	0.16
F110-F109	PEAD	200	97.18	0.0312	1.51	0.2
F109-F1	PEAD	200	97.18	0.0314	1.61	0.22
F108-F107	PEAD	200	58.23	0.004	0.5	0.18
F107-F106	PEAD	200	55.8	0.0441	1.17	0.1
F106-F105	PEAD	200	51.17	0.0609	1.44	0.11
F105-F104	PEAD	200	38.02	0.0066	0.7	0.2
F104-F103	PEAD	200	60.77	0.0138	0.98	0.19
G91-G90	PEAD	250	50.08	0.0428	1.9	0.18

Tabla 6. Características de los tramos alcantarillado. Continuación.

		Diámetro	Longitud	Pendiente	Velocidad	
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
F103-F102	PEAD	200	60.76	0.0291	1.36	0.18
F102-F101	PEAD	200	64.79	0.0395	1.59	0.18
F101-F64	PEAD	200	70.66	0.0382	1.66	0.2
F100-F99	PEAD	200	48.74	0.0934	1.52	0.08
F99-F98	PEAD	200	61.66	0.0605	1.31	0.09
F98-F97	PEAD	200	59.19	0.0426	1.28	0.12
F97-F96	PEAD	200	92.16	0.036	1.37	0.15
F96-F95	PEAD	200	53.65	0.0274	1.32	0.18
F95-F65	PEAD	250	82.75	0.0196	1.22	0.16
F94-F93	PEAD	200	93.31	0.0819	1.45	0.09
F93-F92	PEAD	200	93.28	0.0715	1.58	0.11
F92-F91	PEAD	200	71.78	0.056	1.6	0.14
F91-F67	PEAD	200	71.75	0.0145	1.07	0.21
F90-F89	PEAD	200	54.57	0.0805	1.44	0.09
F89-F88	PEAD	200	54.58	0.1263	1.69	0.08
F88-F87	PEAD	200	54.61	0.0163	0.9	0.15
F87-F86	PEAD	200	54.57	0.0478	1.44	0.13
F86-F85	PEAD	200	54.37	0.0416	1.46	0.15
F85-F68	PEAD	200	54.4	0.0375	1.49	0.17
F84-F83	PEAD	200	25.97	0.1032	1.58	0.08
F83-F82	PEAD	200	59.32	0.0035	0.48	0.18
F82-F81	PEAD	200	59.34	0.0035	0.51	0.2
F81-F76	PEAD	200	63.4	0.0123	0.88	0.18
F80-F79	PEAD	200	87.95	0.0066	0.6	0.16
F79-F78	PEAD	200	83.61	0.0035	0.53	0.22
F78-F77	PEAD	200	56.11	0.0035	0.58	0.25
F77-F76	PEAD	200	64.97	0.0035	0.62	0.29
F76-F75	PEAD	200	18.53	0.0311	1.59	0.22
F75-F74	PEAD	200	40.71	0.004	0.78	0.39
F74-F73	PEAD	200	64.01	0.0434	1.87	0.22
F73-F72	PEAD	200	64.04	0.0623	2.19	0.21
F72-F71	PEAD	200	64.04	0.0406	1.93	0.24
F71-F70	PEAD	200	64.01	0.0195	1.52	0.31

Tabla 7. Características de los tramos alcantarillado. Continuación.

		Diámetro	Longitud	Pendiente	Velocidad	
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
F70-F69	PEAD	200	86.93	0.0757	2.54	0.23
F69-F68	PEAD	250	79.01	0.0019	0.68	0.46
F68-F67	PEAD	250	60.42	0.016	1.62	0.32
F67-F66	PEAD	315	40.38	0.0171	1.74	0.25
F66-F65	PEAD	315	67.99	0.013	1.59	0.28
F65-F64	PEAD	315	78.35	0.0107	1.59	0.33
F64-F1	PEAD	315	84.27	0.006	1.36	0.43
F63-F62	PEAD	200	69.81	0.113	1.63	0.08
F62-F61	PEAD	200	59.87	0.0409	1.16	0.1
F61-F60	PEAD	200	60.48	0.0278	1.14	0.14
F60-F59	PEAD	200	79.8	0.0082	0.82	0.22
F59-F58	PEAD	200	64.54	0.0259	1.31	0.19
F58-F57	PEAD	200	81.43	10.072	1.21	0.23
F57-F56	PEAD	200	57.29	0.0098	1.03	0.28
F56-F2	PEAD	200	57.1	0.061	2.04	0.19
F55-F41	PEAD	200	54.11	0.0335	1.06	0.11
F54-F53	PEAD	200	69.6	0.1073	1.6	0.08
F53-F52	PEAD	200	69.57	0.0379	1.16	0.11
F52-F51	PEAD	200	69.6	0.0231	1.1	0.15
F51-F50	PEAD	200	69.6	0.0635	1.7	0.14
F50-F44	PEAD	200	52.64	0.0266	1.32	0.18
F49-F48	PEAD	200	82.71	0.3695	2.46	0.06
F48-F47	PEAD	200	82.71	0.0531	1.37	0.11
F47-F46	PEAD	200	82.71	0.0278	1.23	0.16
F46-F45	PEAD	200	82.68	0.0167	1.12	0.21
F45-F44	PEAD	200	61.38	0.0608	1.86	0.16
F44-F42	PEAD	200	82.88	0.0035	0.82	0.49
F43-F42	PEAD	200	53.16	0.0295	1.02	0.11
F42-F41	PEAD	200	56.64	0.051	2.24	0.26
F41-F4	PEAD	250	55.09	0.0014	0.61	0.54
F40-F39	PEAD	200	90.93	0.0985	1.55	0.08
F39-F38	PEAD	200	90.96	0.0345	1.21	0.13
F38-F37	PEAD	200	73.98	0.0035	0.6	0.27
F37-F36	PEAD	200	74.01	0.0055	0.76	0.27

Tabla 8. Características de los tramos alcantarillado. Continuación.

	0.0.1	Diámetro	Longitud	Pendiente	Velocidad	V/D
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
F36-F35	PEAD	200	61.78	0.1002	2.22	0.14
F35-F34	PEAD	200	62.82	0.0027	0.64	0.39
F34-F13	PEAD	200	62.82	0.0064	0.91	0.33
F33-F32	PEAD	200	90.36	0.0632	1.33	0.09
F32-F31	PEAD	200	90.33	0.0435	1.31	0.12
F31-F30	PEAD	200	84.43	0.0296	1.29	0.16
F30-F29	PEAD	200	86.07	0.0395	1.55	0.17
F29-F14	PEAD	200	86.07	0.0135	1.13	0.25
F28-F27	PEAD	200	69.54	0.0493	1.22	0.1
F27-F26	PEAD	200	49.97	0.004	0.5	0.18
F26-F25	PEAD	200	50	0.071	1.53	0.1
F25-F24	PEAD	200	49.97	0.022	1.1	0.16
F24-F23	PEAD	200	49.97	0.0055	0.71	0.24
F23-F22	PEAD	200	48	0.0283	1.33	0.18
F22-F15	PEAD	200	65.95	0.0294	1.43	0.19
F21-F20	PEAD	200	52.71	0.0607	1.31	0.09
F20-F19	PEAD	200	68.17	0.0537	1.25	0.1
F19-F18	PEAD	200	68.17	0.0277	1.14	0.14
F18-F17	PEAD	200	68.17	0.0214	1.14	0.17
F17-F16	PEAD	200	68.2	0.0089	0.89	0.24
F16-F15	PEAD	200	82.16	0.0385	1.6	0.19
F15-F14	PEAD	200	72.16	0.0143	1.4	0.35
F14-F13	PEAD	200	61.77	0.0059	1.14	0.58
F13-F5	PEAD	315	57.85	0.001	0.68	0.56
F12-F11	PEAD	200	80.25	0.1191	1.66	0.08
F11-F10	PEAD	200	59.09	0.004	0.53	0.19
F10-F9	PEAD	200	83.36	0.004	0.6	0.24
F9-F8	PEAD	200	83.33	0.038	1.47	0.16
F8-F7	PEAD	200	71.6	0.0704	1.94	0.15
F7-F6	PEAD	200	58.63	0.002	0.57	0.41
F6-F5	PEAD	200	58.6	0.0021	0.6	0.43
F5-F4	PEAD	315	59.88	001	0.72	0.66
F4-F3	PEAD	400	59.1	0.0006	0.79	0.55
F3-F2	PEAD	400	60.54	0.0006	0.8	0.55
F2-F1	PEAD	400	54.71	0.0006	0.82	0.61

Tabla 9. Características de los tramos alcantarillado. Continuación.

		Diámetro	Longitud	Pendiente	Velocidad	
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
F1-F0	PEAD	500	18.79	0.0012	0.95	0.61
E96-E1	PEAD	200	67.65	0.0059	0.58	0.16
E95-E94	PEAD	200	69.77	0.019	0.89	0.12
E94-E90	PEAD	200	69.74	0.0247	0.97	0.12
E93-E92	PEAD	200	50.8	0.0667	1.35	0.09
E92-E91	PEAD	200	50.77	0.1373	1.74	0.08
E91-E90	PEAD	200	92.77	0.0039	0.56	0.22
E90-E83	PEAD	200	84.61	0.0297	1.44	0.19
E89-E88	PEAD	200	59.81	0.1095	1.61	0.08
E88-E87	PEAD	200	59.78	0.0768	1.42	0.09
E87-E86	PEAD	200	59.78	0.01	0.77	0.17
E86-E85	PEAD	200	59.78	0.0033	0.56	0.25
E85-E84	PEAD	200	89.72	0.0026	0.56	0.32
E84-E83	PEAD	200	89.75	0.0022	0.56	0.38
E83-E75	PEAD	200	88.19	0.0042	0.89	0.49
E82-E81	PEAD	200	58.79	0.0569	1.28	0.09
E81-E80	PEAD	200	58.82	0.0058	0.58	0.16
E80-E79	PEAD	200	58.82	0.0716	1.52	0.1
E79-E78	PEAD	200	58.79	0.0219	1.09	0.16
E78-E77	PEAD	200	80.26	0.027	0.56	0.31
E77-E76	PEAD	200	80.23	0.023	0.56	0.36
E76-E75	PEAD	200	56.19	0.0025	0.6	0.38
E75-E74	PEAD	200	50.76	0.0092	1.33	0.5
E74-E65	PEAD	250	50.76	0.0185	1.72	0.31
E73-E72	PEAD	200	65.29	0.0796	1.44	0.09
E72-E71	PEAD	200	93.68	0.0472	1.27	0.11
E71-E70	PEAD	200	93.66	0.0695	1.67	0.12
E70-E69	PEAD	200	89.22	0.0046	0.7	0.28
E69-E68	PEAD	200	64.62	0.0022	0.56	0.37
E68-E67	PEAD	200	64.62	0.062	1.93	0.17
E67-E66	PEAD	200	64.62	0.0746	2.14	0.17
E66-E65	PEAD	200	64.62	0.004	0.78	0.39
E65-E64	PEAD	315	57.1	0.0607	2.84	0.2
E64-E3	PEAD	315	57.07	0.0368	2.39	0.23
E63-E62	PEAD	200	33.91	0.0316	1.04	0.11

Tabla 10. Características de los tramos alcantarillado. Continuación.

		Diámetro	Longitud	Pendiente	Velocidad	
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
E62-E61	PEAD	200	55.75	0.0644	1.34	0.09
E61-E60	PEAD	200	20.56	0.0379	1.11	0.1
E60-E4	PEAD	200	66.28	0.0049	0.6	0.2
E59-E58	PEAD	200	16.37	0.004	0.5	0.18
E58-E57	PEAD	200	15.27	0.004	0.5	0.18
E57-E7	PEAD	200	32.52	0.004	0.5	0.18
E56-E55	PEAD	200	36.12	0.004	0.5	0.18
E55-E54	PEAD	200	98.15	0.0146	0.8	0.13
E54-E53	PEAD	200	38.92	0.0146	0.87	0.15
E53-E8	PEAD	200	69.17	0.024	1.14	0.16
E52-E51	PEAD	200	48.76	0.0148	0.8	0.13
E51-E50	PEAD	200	74.8	0.0258	0.97	0.11
E50-E49	PEAD	200	25.8	0.0202	0.93	0.13
E49-E48	PEAD	200	18.1	0.0044	0.56	0.2
E48-E47	PEAD	200	20.73	0.0039	0.56	0.21
E47-E46	PEAD	200	18.92	0.0037	0.56	0.23
E46-E9	PEAD	200	61.99	0.0199	1.1	0.17
E45-E44	PEAD	200	61.71	0.0551	1.27	0.09
E44-E43	PEAD	200	76.65	0.004	0.51	0.18
E43-E42	PEAD	200	41.85	0.0515	1.36	0.11
E42-E10	PEAD	200	47.49	0.044	1.38	0.13
E41-E40	PEAD	200	85.57	0.043	1.16	0.1
E40-E39	PEAD	200	51.31	0.0534	1.27	0.1
E39-E11	PEAD	200	86.46	0.0784	1.68	0.11
E38-E37	PEAD	200	69.94	0.0177	0.85	0.12
E37-E36	PEAD	200	68.02	0.0994	1.58	0.08
E36-E12	PEAD	200	65.87	0.0859	1.69	0.11
E35-E34	PEAD	200	65.49	0.0904	1.51	0.08
E34-E13	PEAD	200	65.47	0.0755	1.41	0.09
E33-E32	PEAD	200	52.43	0.0456	1.18	0.1
E32-E31	PEAD	200	41.56	0.0592	1.3	0.09
E31-E30	PEAD	200	39.6	0.1099	1.62	0.08
E30-E15	PEAD	200	15.74	0.0426	1.2	0.11
E29-E28	PEAD	200	20.38	0.1011	1.57	0.08
E28-E19	PEAD	200	47.06	0.038	1.11	0.1

Tabla 11. Características de los tramos alcantarillado. Continuación.

		Diámetro	Longitud	Pendiente	Velocidad	
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
E27-E26	PEAD	200	57.17	0.0408	1.14	0.1
E26-E21	PEAD	200	62.63	0.0444	1.17	0.1
E25-E24	PEAD	200	67.69	0.004	0.5	0.18
E24-E23	PEAD	200	51.25	0.004	0.5	0.18
E23-E22	PEAD	200	25.01	0.004	0.52	0.19
E22-E21	PEAD	200	65.39	0.0248	1.1	0.14
E21-E20	PEAD	200	79.98	0.0373	1.55	0.18
E20-E19	PEAD	200	66.92	0.0022	0.59	0.4
E19-E18	PEAD	200	63.07	0.002	0.61	0.47
E18-E17	PEAD	200	63.1	0.002	0.62	0.5
E17-E16	PEAD	200	78.88	0.002	0.64	0.54
E16-E15	PEAD	200	74.9	0.0253	1.66	0.28
E15-E14	PEAD	200	25.58	0.0332	1.93	0.29
E14-E13	PEAD	200	36.11	0.0239	1.73	0.32
E13-E12	PEAD	250	97.66	0.0133	1.46	0.31
E12-E11	PEAD	250	53.8	0.002	0.76	0.58
E11-E10	PEAD	250	43.95	0.002	0.79	0.65
E10-E9	PEAD	315	44.27	0.0405	2.43	0.22
E9-E8	PEAD	315	44	0.0579	2.88	0.21
E8-E7	PEAD	315	12.13	0.0693	3.16	0.21
E7-E6	PEAD	315	47.6	0.0771	3.32	0.21
E6-E5	PEAD	315	91.41	0.0699	3.23	0.22
E5-E4	PEAD	315	60.84	0.0269	2.32	0.28
E4-E3	PEAD	315	77.08	0.0592	3.14	0.24
E3-E2	PEAD	400	70.69	0.0012	0.85	0.69
E2-E1	PEAD	400	70.69	0.0148	2.19	0.33
E1-E0	PEAD	400	83.78	0.0384	3.11	0.26
D4-D3	PEAD	200	84.73	0.004	0.5	0.18
D3-D2	PEAD	200	91.9	0.0361	1.22	0.13
D2-D1	PEAD	200	91.92	0.0492	1.54	0.14
D1-D0	PEAD	200	91.92	0.0109	0.99	0.24
C8-C1	PEAD	200	58.71	0.0765	1.42	0.09
C7-C5	PEAD	200	26.19	0.0661	1.35	0.09
C6-C5	PEAD	200	48.38	0.0325	1.05	0.11
C5-C3	PEAD	200	34.34	0.0184	0.86	0.12

Tabla 12. Características de los tramos alcantarillado. Continuación.

		Diámetro	Longitud	Pendiente	Velocidad	
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
C4-C3	PEAD	200	34.11	0.0317	1.04	0.11
C3-C1	PEAD	200	78.21	0.0747	1.65	0.11
C2-C1	PEAD	200	53.78	0.004	0.5	0.18
C1-C0	PEAD	200	13.3	0.0031	0.6	0.31
B16-B15	PEAD	200	64.14	0.0136	0.78	0.13
B15-B14	PEAD	200	73.75	0.0066	0.62	0.17
B14-B13	PEAD	200	61.29	0.0189	1.01	0.16
B13-B12	PEAD	200	56.03	0.0371	1.38	0.15
B12-B3	PEAD	200	85.8	0.0094	0.92	0.24
B11-B7	PEAD	200	87.3	0.0537	1.25	0.1
B10-B9	PEAD	200	51.8	0.0452	1.18	0.1
B9-B8	PEAD	200	38.83	0.0242	0.95	0.12
B8-B7	PEAD	200	49.12	0.066	0.63	0.17
B7-B6	PEAD	200	81.34	0.0106	0.93	0.22
B6-B5	PEAD	200	81.37	0.0087	0.93	0.26
B5-B4	PEAD	200	81.37	0.0035	0.71	0.37
B4-B3	PEAD	200	81.35	0.0031	0.7	0.42
B3-B2	PEAD	200	30.63	0.0409	2.08	0.27
B2-B1	PEAD	200	73.78	0.0127	1.39	0.39
B1-D0	PEAD	200	73.71	0.0054	1.04	0.51
A35-A34	PEAD	200	30.6	0.0582	1.29	0.09
A34-A33	PEAD	200	10.62	0.0687	1.37	0.09
A33-A32	PEAD	200	38.19	0.0537	1.25	0.1
A32-A2	PEAD	200	43.14	0.0262	0.98	0.11
A31-A30	PEAD	200	34.67	0.0182	0.86	0.12
A30-A29	PEAD	200	12.93	0.0077	0.64	0.15
A29-A28	PEAD	200	47.54	0.0368	1.1	0.1
A28-A3	PEAD	200	50.23	0.0193	0.9	0.13
A27-A26	PEAD	200	31.18	0.0061	0.59	0.16
A26-A25	PEAD	200	58.71	0.004	0.5	0.18
A25-A24	PEAD	200	38.97	0.004	0.5	0.18
A24-A8	PEAD	200	41.41	0.0691	1.48	0.1
A23-A16	PEAD	200	68.92	0.0472	1.2	0.1
A22-A21	PEAD	200	51.68	0.0414	1.15	0.1
A21-A20	PEAD	200	51.7	0.0685	1.37	0.09

Tabla 13. Características de los tramos alcantarillado. Continuación.

ID	Material	Diámetro	Longitud	Pendiente	Velocidad	Y/D
	Wateria	(mm)	(m)	(m/m)	(m/s)	.,,5
A20-A17	PEAD	200	43.88	0.0517	1.28	0.1
A19-A18	PEAD	200	51.96	0.0185	0.86	0.12
A18-A17	PEAD	200	60.02	0.0068	0.61	0.16
A17-A16	PEAD	200	41.82	0.2099	2.59	0.1
A16-A14	PEAD	200	42.02	0.0022	0.56	0.37
A15-A14	PEAD	200	75.17	0.004	0.5	0.18
A14-A11	PEAD	200	42.09	0.0653	2.04	0.18
A13-A12	PEAD	200	39.29	0.0166	0.83	0.13
A12-A11	PEAD	200	72.23	0.004	0.5	0.18
A11-A10	PEAD	200	44.91	0.0996	2.55	0.18
A10-A9	PEAD	200	77.97	2	0.64	0.54
A9-A8	PEAD	200	72.39	2	0.66	0.57
A8-A4	PEAD	250	43.67	74.08	2.54	0.18
A7-A6	PEAD	200	19.15	4	0.5	0.18
A6-A5	PEAD	200	80.83	4	0.5	0.18
A5-A4	PEAD	200	36.45	4	0.51	0.18
A4-A3	PEAD	250	46.87	63.38	2.52	0.21
A3-A2	PEAD	250	39.73	79.54	2.85	0.21
A2-A1	PEAD	250	51.94	9.63	1.38	0.38
A1-A0	PEAD	250	51.95	9.62	1.39	0.38

Anexo 2. Variante 2.

Tabla 1. Características de los tramos.

ID	Material	Diámetro (mm)	Longitud (m)	Pendiente (m/m)	Velocidad (m/s)	Y/D
E37-E36	PEAD	200	38,19	0,0537	1,25	0,14
E36-E6	PEAD	200	43,14	0,0262	0,98	0,14
E35-E34	PEAD	200	34,67	0,0182	0,86	0,14
E34-E33	PEAD	200	12,93	0,0077	0,64	0,14
E33-E32	PEAD	200	47,54	0,0368	1,10	0,14
E32-E7	PEAD	200	50,23	0,0193	0,88	0,14
E31-E30	PEAD	200	31,18	0,0061	0,59	0,16
E30-E29	PEAD	200	58,71	0,0040	0,50	0,18
E29-E28	PEAD	200	38,97	0,0040	0,50	0,18
E28-E12	PEAD	200	41,41	0,0691	1,42	0,14
E27-E20	PEAD	200	68,92	0,0472	1,20	0,14
E26-E25	PEAD	200	51,68	0,0414	1,15	0,14
E25-E24	PEAD	200	51,7 0	0,0685	1,37	0,14
E24-E21	PEAD	200	43,88	0,0517	1,24	0,14
E23-E22	PEAD	200	51,96	0,0185	0,86	0,14
E22-E21	PEAD	200	60,02	0,0068	0,61	0,16
E21-E20	PEAD	200	41,82	0,2099	2,49	0,14
E20-E18	PEAD	200	42,02	0,0022	0,54	0,35
E19-E18	PEAD	200	75,17	0,0040	0,50	0,18
E18-E15	PEAD	200	42,09	0,0653	1,96	0,17
E17-E16	PEAD	200	39,29	0,0165	0,83	0,14
E16-E15	PEAD	200	72,23	0,0040	0,50	0,18
E15-E14	PEAD	200	44,91	0,0995	2,45	0,17
E14-E13	PEAD	200	77,97	0,0020	0,62	0,50
E13-E12	PEAD	200	72,39	0,0020	0,64	0,53
E12-E8	PEAD	250	43,67	0,0741	2,44	0,17
E11-E10	PEAD	200	19,15	0,0040	0,50	0,18
E10-E9	PEAD	200	80,83	0,0040	0,50	0,18
E9-E8	PEAD	200	36,45	0,0040	0,50	0,18

Tabla 2. Características de los tramos. Continuación.

ID	Material	Diámetro (mm)	Longitud (m)	Pendiente (m/m)	Velocidad (m/s)	Y/D
E8-E7	PEAD	250	46,87	0,0634	2,42	0,19
E7-E6	PEAD	250	39,73	0,0795	2,74	0,19
E6-E5	PEAD	250	51,94	0,0096	1,33	0,35
E5-E4	PEAD	250	51,95	0,0096	1,34	0,36
E4-E3	PEAD	250	68,57	0,0294	2,02	0,27
E3-E2	PEAD	250	68,54	0,0294	2,04	0,28
E2-E1	PEAD	250	68,54	0,0294	2,07	0,28
E1-E0	PEAD	315	80,7	0,0259	1,95	0,22
C267-C266	PEAD	200	53,12	0,0074	0,63	0,15
C266-C163	PEAD	200	67,65	0,0065	0,60	0,16
C265-C264	PEAD	200	50,8	0,0667	1,35	0,14
C264-C263	PEAD	200	50,77	0,1373	1,74	0,14
C263-C252	PEAD	200	92,77	0,0039	0,54	0,20
C262-C258	PEAD	200	34,11	0,0317	1,04	0,14
C261-C259	PEAD	200	26,19	0,0661	1,35	0,14
C260-C259	PEAD	200	48,38	0,0325	1,05	0,14
C259-C258	PEAD	200	34,34	0,0184	0,86	0,14
C258-C256	PEAD	200	78,21	0,0747	1,58	0,14
C257-C256	PEAD	200	58,71	0,0765	1,42	0,14
C256-C255	PEAD	200	53,78	0,0034	0,60	0,28
C255-C254	PEAD	200	71,62	0,0029	0,60	0,32
C254-C253	PEAD	200	69,77	0,0040	0,70	0,32
C253-C252	PEAD	200	69,74	0,0040	0,73	0,34
C252-C245	PEAD	200	84,61	0,0256	1,60	0,26
C251-C250	PEAD	200	59,81	0,1095	1,61	0,08
C250-C249	PEAD	200	59,78	0,0768	1,42	0,09
C249-C248	PEAD	200	59,78	0,0100	0,74	0,16
C248-C247	PEAD	200	59,78	0,0033	0,54	0,24
C247-C246	PEAD	200	89,72	0,0025	0,54	0,30
C246-C245	PEAD	200	89,75	0,0022	0,54	0,35
C245-C237	PEAD	200	88,19	0,0042	0,94	0,56
C244-C243	PEAD	200	58,79	0,0570	1,28	0,14
C243-C242	PEAD	200	58,82	0,0058	0,58	0,16
C242-C241	PEAD	200	58,82	0,0716	1,46	0,14

Tabla 3. Características de los tramos. Continuación.

ID	Material	Diámetro (mm)	Longitud (m)	Pendiente (m/m)	Velocidad (m/s)	Y/D
C241-C240	PEAD	200	58,79	0,0219	1,05	0,15
C240-C239	PEAD	200	80,26	0,0027	0,54	0,29
C239-C238	PEAD	200	80,23	0,0023	0,54	0,34
C238-C237	PEAD	200	56,19	0,0027	0,6	0,34
C237-C236	PEAD	200	50,76	0,0092	1,37	0,53
C236-C227	PEAD	250	50,76	0,0185	1,77	0,32
C235-C234	PEAD	200	65,29	0,0796	1,44	0,14
C234-C233	PEAD	200	93,68	0,0472	1,22	0,14
C233-C232	PEAD	200	93,66	0,0695	1,60	0,14
C232-C231	PEAD	200	89,22	0,0046	0,67	0,26
C231-C230	PEAD	200	64,62	0,0022	0,54	0,34
C230-C229	PEAD	200	64,62	0,0620	1,86	0,16
C229-C228	PEAD	200	64,62	0,0746	2,06	0,16
C228-C227	PEAD	200	64,62	0,0040	0,75	0,36
C227-C226	PEAD	315	57,1	0,0607	2,87	0,20
C226-C165	PEAD	315	57,07	0,0368	2,42	0,23
C225-C224	PEAD	200	33,91	0,0315	1,04	0,14
C224-C223	PEAD	200	55,75	0,0644	1,34	0,14
C223-C222	PEAD	200	20,56	0,0380	1,11	0,14
C222-C166	PEAD	200	66,28	0,0050	0,57	0,18
C221-C220	PEAD	200	16,37	0,0040	0,50	0,18
C220-C219	PEAD	200	15,27	0,0040	0,50	0,18
C219-C169	PEAD	200	32,52	0,0040	0,50	0,18
C218-C217	PEAD	200	36,12	0,0040	0,50	0,18
C217-C216	PEAD	200	98,15	0,0147	0,80	0,13
C216-C215	PEAD	200	38,92	0,0146	0,83	0,14
C215-C170	PEAD	200	69,17	0,0240	1,09	0,15
C214-C213	PEAD	200	48,76	0,0148	0,80	0,14
C211-C210	PEAD	200	18,1	0,0044	0,54	0,14
C210-C209	PEAD	200	20,73	0,0040	0,54	0,20
C209-C208	PEAD	200	18,92	0,0037	0,54	0,21

Tabla 4. Características de los tramos. Continuación.

ID	Material	Diámetro (mm)	Longitud (m)	Pendiente (m/m)	Velocidad (m/s)	Y/D
C208-C171	PEAD	200	61,99	0,0020	1,05	0,16
C207-C206	PEAD	200	61,71	0,0551	1,27	0,09
C206-C205	PEAD	200	76,65	0,0040	0,50	0,18
C205-C204	PEAD	200	41,85	0,0515	1,31	0,14
C204-C172	PEAD	200	47,49	0,0440	1,33	0,14
C203-C202	PEAD	200	85,57	0,0430	1,16	0,14
C202-C201	PEAD	200	51,31	0,0534	1,25	0,14
C201-C173	PEAD	200	86,46	0,0784	1,61	0,14
C200-C199	PEAD	200	69,94	0,0177	0,85	0,14
C199-C198	PEAD	200	68,02	0,0994	1,56	0,14
C198-C174	PEAD	200	65,87	0,0859	1,62	0,14
C197-C196	PEAD	200	65,49	0,0904	1,51	0,14
C196-C175	PEAD	200	65,47	0,0755	1,41	0,14
C195-C194	PEAD	200	52,43	0,0456	1,18	0,14
C194-C193	PEAD	200	41,56	0,0592	1,30	0,14
C193-C192	PEAD	200	39,60	0,1099	1,61	0,14
C192-C177	PEAD	200	15,74	0,0426	1,16	0,14
C191-C190	PEAD	200	20,38	0,1011	1,57	0,14
C190-C181	PEAD	200	47,06	0,0381	1,11	0,14
C189-C188	PEAD	200	57,17	0,0408	1,14	0,14
C188-C183	PEAD	200	62,63	0,0444	1,17	0,14
C187-C186	PEAD	200	67,69	0,0040	0,50	0,18
C186-C185	PEAD	200	51,25	0,0040	0,50	0,18
C185-C184	PEAD	200	25,01	0,0040	0,50	0,18
C184-C183	PEAD	200	65,39	0,0249	1,06	0,13
C183-C182	PEAD	200	79,98	0,0373	1,49	0,17
C182-C181	PEAD	200	66,92	0,0022	0,57	0,37
C181-C180	PEAD	200	63,07	0,0020	0,59	0,44
C180-C179	PEAD	200	63,10	0,0020	0,60	0,46
C179-C178	PEAD	200	78,88	0,0020	0,62	0,49
C178-C177	PEAD	200	74,90	0,0253	1,59	0,26
C177-C176	PEAD	200	25,58	0,0332	1,86	0,27

Tabla 5. Características de los tramos. Continuación.

ID	Material	Diámetro (mm)	Longitud (m)	Pendiente (m/m)	Velocidad (m/s)	Y/D
C176-C175	PEAD	200	36,11	0,0239	1,66	0,30
C175-C174	PEAD	250	97,66	0,0133	1,40	0,29
C174-C173	PEAD	250	53,8	0,0020	0,74	0,54
C173-C172	PEAD	250	43,95	0,0020	0,77	0,59
C172-C171	PEAD	315	44,27	0,0403	2,34	0,20
C171-C170	PEAD	315	44	0,0578	2,77	0,20
C170-C169	PEAD	315	12,13	0,0693	3,04	0,20
C169-C168	PEAD	315	47,60	0,0771	3,19	0,20
C168-C167	PEAD	315	91,41	0,0699	3,11	0,21
C167-C166	PEAD	315	60,84	0,0270	2,23	0,26
C166-C165	PEAD	315	77,08	0,05916	3,02	0,23
C165-C164	PEAD	400	70,69	0,0012	0,84	0,66
C164-C163	PEAD	400	70,69	0,01475	2,15	0,32
C163-C1	PEAD	400	92,87	0,03439	2,94	0,26
C162-C161	PEAD	200	45,94	0,0111	0,72	0,14
C161-C6	PEAD	200	97,17	0,0066	0,60	0,16
C160-C159	PEAD	200	47,39	0,0468	1,20	0,14
C159-C158	PEAD	200	38,85	0,0535	1,25	0,14
C158-C157	PEAD	200	50,40	0,0065	0,60	0,16
C157-C7	PEAD	200	50,40	0,0085	0,70	0,16
C156-C153	PEAD	200	62,29	0,0528	1,25	0,14
C155-C154	PEAD	200	53,75	0,0424	1,16	0,14
C154-C153	PEAD	200	56,03	0,0066	0,60	0,16
C153-C152	PEAD	200	72,65	0,0301	1,19	0,14

Tabla 6. Características de los tramos. Continuación.

ID	Material	Diámetro (mm)	Longitud (m)	Pendiente (m/m)	Velocidad (m/s)	Y/D
C152-C151	PEAD	200	50,70	0,0246	1,17	0,16
C151-C150	PEAD	200	50,67	0,0053	0,71	0,25
C150-C129	PEAD	200	58,44	0,0078	0,86	0,25
C149-C138	PEAD	200	84,63	0,0412	1,14	0,14
C148-C139	PEAD	200	82,07	0,0395	1,13	0,14
C147-C146	PEAD	200	92,02	0,0654	1,34	0,14
C146-C145	PEAD	200	90,52	0,0065	0,64	0,17
C145-C144	PEAD	200	60,1	0,0286	1,16	0,14
C144-C143	PEAD	200	61,02	0,0403	1,40	0,14
C143-C142	PEAD	200	72,42	0,0041	0,67	0,28
C142-C141	PEAD	200	15,13	0,0040	0,67	0,29
C141-C140	PEAD	200	77,38	0,0226	1,3	0,20
C140-C139	PEAD	200	56,40	0,0200	1,29	0,22
C139-C138	PEAD	200	57,26	0,0026	0,66	0,42
C138-C136	PEAD	200	60,28	0,0135	1,26	0,30
C137-C136	PEAD	200	52,35	0,0040	0,50	0,18
C136-C135	PEAD	200	50,53	0,0017	0,61	0,58
C135-C134	PEAD	250	50,57	0,0016	0,60	0,43
C134-C133	PEAD	250	45,67	0,0015	0,60	0,45
C133-C132	PEAD	250	32,05	0,0015	0,61	0,46
C132-C131	PEAD	250	57,27	0,0045	0,91	0,35
C131-C130	PEAD	250	58,29	0,0357	1,93	0,21
C130-C129	PEAD	250	60,41	0,0200	1,60	0,25
C129-C7	PEAD	250	59,38	0,0037	0,95	0,47

Tabla 7. Características de los tramos. Continuación.

15	A A A A A A A A B A B A B A B A B A B B B B B B B B B B	Diámetro	Longitud	Pendiente	Velocidad	V/D
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
C128-C127	PEAD	200	92,04	0,0302	1,03	0,14
C127-C8	PEAD	200	92,04	0,0158	0,87	0,14
C126-C125	PEAD	200	59,05	0,0393	1,13	0,14
C125-C9	PEAD	200	59,98	0,0065	0,60	0,16
C124-C9	PEAD	200	84,71	0,0169	0,84	0,14
C123-C122	PEAD	200	58,26	0,0040	0,50	0,18
C122-C121	PEAD	200	59,44	0,0491	1,22	0,14
C121-C120	PEAD	200	59,44	0,0057	0,60	0,18
C120-C119	PEAD	200	51,74	0,00969	1,81	0,18
C119-C13	PEAD	200	51,75	0,0166	3,02	0,17
C118-C104	PEAD	200	97,41	0,0197	2,61	0,14
C117-C116	PEAD	200	69,37	0,0783	7,58	0,14
C116-C115	PEAD	200	69,37	0,0085	1,36	0,15
C115-C114	PEAD	200	55,98	0,0104	1,78	0,16
C114-C113	PEAD	200	97,9	0,006	1,38	0,22
C113-C112	PEAD	200	97,87	0,0149	3,2	0,21
C112-C111	PEAD	200	79,91	0,0035	1,12	0,33
C111-C109	PEAD	200	59,86	0,0516	9,67	0,18
C110-C109	PEAD	200	43,06	0,0251	3,14	0,14
C109-C105	PEAD	200	56,45	0,0422	8,91	0,2
C108-C107	PEAD	200	58,9	0,004	0,76	0,18
C107-C106	PEAD	200	36,16	0,004	0,76	0,18
C106-C105	PEAD	200	54,72	0,0497	5,34	0,14
C105-C104	PEAD	200	57,33	0,0018	0,8	0,55
C104-C103	PEAD	250	59,97	0,0234	6,63	0,22
C103-C102	PEAD	250	50,22	0,0015	0,77	0,47
C102-C101	PEAD	250	50,19	0,0015	0,76	0,49
C101-C100	PEAD	250	59,07	0,0026	1,24	0,42
C100-C99	PEAD	250	44,61	0,0014	0,77	0,52

Tabla 8. Características de los tramos. Continuación.

		Diámetro	Longitud	Pendiente	Velocidad	w/p
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
C99-C13	PEAD	250	51,42	0,0014	0,76	0,54
C2-C1	PEAD	500	81,83	0,0012	1,49	0,65
C1-E0	PEAD	500	68	0,0019	2,49	0,78
C96-C95	PEAD	200	69,63	0,1125	1,74	0,09
C95-C94	PEAD	200	64,65	0,0034	0,55	0,24
C94-C91	PEAD	200	64,68	0,0372	1,38	0,15
C93-C92	PEAD	200	53,24	0,0319	1,05	0,14
C92-C91	PEAD	200	51,65	0,0490	1,22	0,14
C91-C89	PEAD	200	38,10	0,0328	1,48	0,18
C90-C89	PEAD	200	97,10	0,0511	1,23	0,14
C89-C88	PEAD	200	95,12	0,0229	1,44	0,24
C88-C87	PEAD	200	60,95	0,0226	1,47	0,25
C87-C71	PEAD	200	60,95	0,0059	0,93	0,37
C86-C85	PEAD	200	63,31	0,0040	0,50	0,18
C85-C84	PEAD	200	63,31	0,0230	0,93	0,14
C84-C83	PEAD	200	47,25	0,0660	1,41	0,14
C83-C82	PEAD	200	30,07	0,0688	1,50	0,14
C82-C81	PEAD	200	17,97	0,0617	1,48	0,14
C81-C80	PEAD	200	17,73	0,0468	1,38	0,14
C80-C79	PEAD	200	71,41	0,0430	1,44	0,14
C79-C73	PEAD	200	71,41	0,0199	1,17	0,19
C78-C77	PEAD	200	98,65	0,0399	1,13	0,14
C77-C76	PEAD	200	98,68	0,0635	1,44	0,14
C76-C75	PEAD	200	80,98	0,0421	1,39	0,14
C75-C74	PEAD	200	80,98	0,0250	0,55	0,31
C74-C73	PEAD	200	78,33	0,0229	1,28	0,20
C73-C72	PEAD	200	74,15	0,0262	1,65	0,27
C72-C71	PEAD	200	78,42	0,0131	1,32	0,34
C71-C14	PEAD	315	55,47	0,0025	0,83	0,39
C70-C69	PEAD	200	83,68	0,0302	1,03	0,14
C69-C68	PEAD	200	65,33	0,0312	1,04	0,14
C68-C14	PEAD	200	75,81	0,0408	1,29	0,14

Tabla 9. Características de los tramos. Continuación.

		Diámetro	Longitud	Pendiente	Velocidad	v/5
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
C67-C66	PEAD	200	64,70	0,0543	1,26	0,14
C66-C65	PEAD	200	64,70	0,0397	1,13	0,14
C65-C64	PEAD	200	65,48	0,0238	1,02	0,14
C64-C63	PEAD	200	65,52	0,0465	1,41	0,14
C63-C62	PEAD	200	69,07	0,0334	1,34	0,16
C62-C16	PEAD	200	69,07	0,0094	0,91	0,23
C61-C60	PEAD	200	65,17	0,0040	0,50	0,18
C60-C59	PEAD	200	65,20	0,0058	0,57	0,16
C59-C58	PEAD	200	66,33	0,0418	1,25	0,14
C58-C57	PEAD	200	66,33	0,0918	1,79	0,14
C57-C56	PEAD	200	76,83	0,0255	1,23	0,17
C56-C17	PEAD	200	76,8	0,0376	1,50	0,17
C55-C54	PEAD	200	93,03	0,0656	1,35	0,14
C54-C53	PEAD	200	65,45	0,0603	1,33	0,14
C53-C44	PEAD	200	65,48	0,0215	1,03	0,14
C52-C51	PEAD	200	74,63	0,0764	1,42	0,14
C51-C50	PEAD	200	74,66	0,0583	1,29	0,14
C50-C45	PEAD	200	7,31	0,0064	0,60	0,16
C49-C48	PEAD	200	62,10	0,0535	1,25	0,14
C48-C47	PEAD	200	49,91	0,0611	1,31	0,14
C47-C46	PEAD	200	29,51	0,0152	0,81	0,14
C46-C45	PEAD	200	29,36	0,0059	0,60	0,17
C45-C44	PEAD	200	54,94	0,0030	0,60	0,30
C44-C43	PEAD	200	65,91	0,0020	0,60	0,46
C43-C42	PEAD	200	65,91	0,0183	1,38	0,27
C42-C41	PEAD	200	58,98	0,0383	1,83	0,23
C41-C40	PEAD	250	50,08	0,0428	2,07	0,20
C40-C18	PEAD	250	50,08	0,0188	1,56	0,26
C39-C20	PEAD	200	82,39	0,0170	0,84	0,14
C38-C36	PEAD	200	29,61	0,0203	0,89	0,14
C37-C36	PEAD	200	34,03	0,0773	1,42	0,14
C36-C21	PEAD	200	83,2	0,0304	1,03	0,14

Tabla 10. Características de los tramos. Continuación.

		Diámetro	Longitud	Pendiente	Velocidad	v/5
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
C35-C34	PEAD	200	66,64	0,0040	0,50	0,18
C34-C22	PEAD	200	66,64	0,0065	0,60	0,16
C33-C32	PEAD	200	47,82	0,0600	1,30	0,09
C32-C31	PEAD	200	37,81	0,0040	0,50	0,18
C31-C30	PEAD	200	14,13	0,0040	0,50	0,18
C30-C29	PEAD	200	84,12	0,0179	0,91	0,14
C29-C28	PEAD	200	95,89	0,0181	1,03	0,17
C28-C25	PEAD	200	74,42	0,0087	0,86	0,22
C27-C26	PEAD	200	53,58	0,0177	0,85	0,12
C26-C25	PEAD	200	96,91	0,0065	0,60	0,16
C25-C22	PEAD	200	41,28	0,0023	0,60	0,39
C24-C23	PEAD	200	73,62	0,0040	0,50	0,18
C23-C22	PEAD	200	77,85	0,0065	0,60	0,16
C22-C21	PEAD	200	43,63	0,0017	0,60	0,57
C21-C20	PEAD	250	69,33	0,0014	0,60	0,48
C20-C19	PEAD	250	73,18	0,0083	1,18	0,32
C19-C18	PEAD	250	36,83	0,0263	1,80	0,24
C18-C17	PEAD	315	21,03	0,0861	3,23	0,18
C17-C16	PEAD	315	59,41	0,0097	1,56	0,35
C16-C15	PEAD	315	46,66	0,0101	1,67	0,37
C15-C14	PEAD	315	59,23	0,0012	0,73	0,72
C14-C13	PEAD	400	78,40	0,0012	0,84	0,64
C13-C10	PEAD	400	57,04	0,0012	0,87	0,78
C12-C10	PEAD	200	81,36	0,0111	0,72	0,14
C11-C10	PEAD	200	45,13	0,0040	0,50	0,18
C10-C9	PEAD	400	58,46	0,0012	0,87	0,80
C9-C8	PEAD	500	58,08	0,0015	0,99	0,50
C8-C7	PEAD	500	58,1	0,0146	2,28	0,28
C7-C6	PEAD	500	24,35	0,0012	0,96	0,63
C6-C5	PEAD	500	30,41	0,0089	2,04	0,35
C5-C4	PEAD	500	81,87	0,0012	0,96	0,64
C4-C3	PEAD	500	81,87	0,0012	0,97	0,64
C3-C2	PEAD	500	81,87	0,0012	0,97	0,64

Tabla 11. Características de los tramos. Continuación.

		Diámetro	Longitud	Pendiente	Velocidad	
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
B62-B61	PEAD	200	69,81	0,1130	1,63	0,08
B61-B60	PEAD	200	59,87	0,0409	1,14	0,14
B60-B59	PEAD	200	60,48	0,0278	1,04	0,14
B59-B58	PEAD	200	79,8	0,0082	0,75	0,19
B58-B57	PEAD	200	64,54	0,0259	1,2	0,16
B57-B56	PEAD	200	81,43	0,0172	1,11	0,2
B56-B55	PEAD	200	57,29	0,0098	0,94	0,24
B55-B1	PEAD	200	57,10	0,0609	1,86	0,16
B54-B40	PEAD	200	54,11	0,0330	1,06	0,14
B53-B52	PEAD	200	69,6	0,1070	1,6	0,14
B52-B51	PEAD	200	69,57	0,0379	1,11	0,14
B51-B50	PEAD	200	69,60	0,0230	1	0,14
B50-B49	PEAD	200	69,60	0,0635	1,55	0,14
B49-B43	PEAD	200	52,64	0,0260	1,21	0,16
B48-B47	PEAD	200	82,71	0,369	2,46	0,14
B47-B46	PEAD	200	82,71	0,0531	1,25	0,14
B46-B45	PEAD	200	82,71	0,0278	1,12	0,14
B45-B44	PEAD	200	82,68	0,0167	1,02	0,18
B44-B43	PEAD	200	61,38	0,0608	1,69	0,14
B43-B41	PEAD	200	82,88	0,0035	0,75	0,41
B42-B41	PEAD	200	53,16	0,0295	1,02	0,11
B41-B40	PEAD	200	56,64	0,0510	2,05	0,22
B40-B3	PEAD	250	55,09	0,0013	0,56	0,45
B39-B38	PEAD	200	90,93	0,0985	1,55	0,14
B38-B37	PEAD	200	90,96	0,0345	1,1	0,14
B37-B36	PEAD	200	73,98	0,0035	0,55	0,23
B36-B35	PEAD	200	74,01	0,0055	0,69	0,23
B35-B34	PEAD	200	61,78	0,0100	2,02	0,14
B34-B33	PEAD	200	62,82	0,0026	0,58	0,33
B33-B12	PEAD	200	62,82	0,0064	0,83	0,28
B32-B31	PEAD	200	90,36	0,0632	1,33	0,14
B31-B30	PEAD	200	90,33	0,0455	1,19	0,14
B30-B29	PEAD	200	84,43	0,0296	1,17	0,14
B29-B28	PEAD	200	86,07	0,0395	1,41	0,15
B28-B13	PEAD	200	86,07	0,0135	1,03	0,21

Tabla 12. Características de los tramos. Continuación.

		Diámetro	Longitud	Pendiente	Velocidad	
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
B27-B26	PEAD	200	69,54	0,0493	1,22	0,14
B26-B25	PEAD	200	49,97	0,0040	0,5	0,18
B25-B24	PEAD	200	50	0,0710	1,39	0,14
B24-B23	PEAD	200	49,97	0,0220	1	0,14
B23-B22	PEAD	200	49,97	0,0054	0,65	0,21
B22-B21	PEAD	200	48,00	0,0283	1,22	0,15
B21-B14	PEAD	200	65,95	0,0294	1,3	0,16
B20-B19	PEAD	200	52,71	0,0607	1,31	0,14
B19-B18	PEAD	200	68,17	0,0537	1,25	0,14
B18-B17	PEAD	200	68,17	0,0277	1,03	0,14
B17-B16	PEAD	200	68,17	0,0214	1,04	0,15
B16-B15	PEAD	200	68,20	0,0089	0,82	0,2
B15-B14	PEAD	200	82,16	0,0385	1,46	0,16
B14-B13	PEAD	200	72,16	0,0143	1,28	0,3
B13-B12	PEAD	200	61,77	0,0060	1,06	0,48
B12-B4	PEAD	315	57,85	0,0010	0,63	0,47
B11-B10	PEAD	200	80,25	0,1191	1,66	0,14
B10-B9	PEAD	200	59,09	0,0040	0,5	0,18
B9-B8	PEAD	200	83,36	0,0040	0,55	0,21
B8-B7	PEAD	200	83,33	0,0380	1,34	0,14
B7-B6	PEAD	200	71,60	0,0704	1,76	0,14
B6-B5	PEAD	200	58,63	0,0020	0,52	0,35
B5-B4	PEAD	200	58,60	0,0021	0,55	0,36
B4-B3	PEAD	315	59,88	0,0010	0,67	0,54
B3-B2	PEAD	400	59,10	0,0060	0,73	0,46
B2-B1	PEAD	400	60,54	0,0060	0,74	0,46
B1-D0	PEAD	400	54,71	0,0060	0,77	0,5
A43-A42	PEAD	200	51,17	0,061	1,31	0,14
A42-A41	PEAD	200	38,02	0,0066	0,64	0,17
A41-A40	PEAD	200	60,77	0,0138	0,9	0,17
A40-A39	PEAD	200	60,76	0,0291	1,24	0,15
A39-A38	PEAD	200	64,79	0,0395	1,45	0,15
A38-A1	PEAD	200	70,66	0,0382	1,51	0,17
A37-A36	PEAD	200	48,74	0,0934	1,52	0,14
A36-A35	PEAD	200	61,66	0,0605	1,31	0,14

Tabla 13. Características de los tramos. Continuación.

		Diámetro	Longitud	Pendiente	Velocidad	
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
A35-A34	PEAD	200	59,19	0,0426	1,16	0,14
A34-A33	PEAD	200	92,16	0,036	1,25	0,14
A33-A32	PEAD	200	53,65	0,0274	1,2	0,15
A32-A2	PEAD	250	82,75	0,0196	1,11	0,14
A31-A30	PEAD	200	93,31	0,082	1,45	0,14
A30-A29	PEAD	200	93,28	0,0715	1,44	0,14
A29-A28	PEAD	200	71,78	0,056	1,45	0,14
A28-A4	PEAD	200	71,75	0,0145	0,97	0,18
A27-A26	PEAD	200	54,57	0,0805	1,44	0,14
A26-A25	PEAD	200	54,58	0,1263	1,69	0,14
A25-A24	PEAD	200	54,61	0,0163	0,83	0,14
A24-A23	PEAD	200	54,57	0,0478	1,31	0,14
A23-A22	PEAD	200	54,37	0,0416	1,33	0,14
A22-A5	PEAD	200	54,4	0,0375	1,35	0,14
A21-A20	PEAD	200	25,97	0,1032	1,58	0,14
A20-A19	PEAD	200	59,32	0,0035	0,48	0,18
A19-A18	PEAD	200	59,34	0,0035	0,48	0,18
A18-A13	PEAD	200	63,4	0,0123	0,8	0,15
A17-A16	PEAD	200	87,95	0,0066	0,6	0,16
A16-A15	PEAD	200	83,61	0,0035	0,49	0,19
A15-A14	PEAD	200	56,11	0,0035	0,53	0,22
A14-A13	PEAD	200	64,97	0,0035	0,57	0,24
A13-A12	PEAD	200	18,53	0,0311	1,45	0,19
A12-A11	PEAD	200	40,71	0,0077	1,38	0,76
A11-A10	PEAD	200	64,01	0,0434	2,72	0,44
A10-A9	PEAD	200	64,04	0,0623	3,12	0,4
A9-A8	PEAD	200	64,04	0,0406	2,68	0,45
A8-A7	PEAD	200	64,01	0,0195	2,05	0,57
A7-A6	PEAD	200	86,93	0,0757	3,41	0,39
A6-A5	PEAD	250	79,01	0,0033	1,04	0,74
A5-A4	PEAD	250	60,42	0,016	1,97	0,47
A4-A3	PEAD	315	40,38	0,0171	2,05	0,34
A3-A2	PEAD	315	67,99	0,013	1,86	0,37
A2-A1	PEAD	315	78,35	0,0107	1,79	0,41
A1-D0	PEAD	315	84,27	0,006	1,48	0,52

Tabla 14. Características de los tramos. Continuación.

		Diámetro	Longitud	Pendiente	Velocidad	v/5
ID	Material	(mm)	(m)	(m/m)	(m/s)	Y/D
D7-D6	PEAD	200	89,67	0,0619	1,32	0,14
D6-D5	PEAD	200	61,08	0,0354	1,08	0,14
D5-D4	PEAD	200	61,08	0,0226	1	0,14
D4-D3	PEAD	200	61,08	0,0054	0,65	0,21
D3-D2	PEAD	200	61,08	0,0473	1,48	0,14
D2-D1	PEAD	200	97,18	0,0312	1,38	0,17
D1-D0	PEAD	200	97,18	0,0314	1,47	0,19
F24-F23	PEAD	200	64,14	0,0135	0,78	0,14
F23-F22	PEAD	200	73,75	0,0065	0,60	0,16
F22-F21	PEAD	200	61,29	0,0189	0,92	0,14
F21-F20	PEAD	200	56,03	0,0371	1,25	0,14
F20-F11	PEAD	200	85,80	0,0094	0,84	0,21
F19-F15	PEAD	200	87,30	0,0537	1,25	0,14
F18-F17	PEAD	200	51,80	0,0452	1,18	0,14
F17-F16	PEAD	200	38,83	0,0242	0,95	0,14
F16-F15	PEAD	200	49,12	0,0065	0,60	0,16
F15-F14	PEAD	200	81,34	0,0105	0,85	0,19
F14-F13	PEAD	200	81,37	0,0087	0,85	0,22
F13-F12	PEAD	200	81,37	0,0034	0,65	0,31
F11-F4	PEAD	200	30,63	0,0400	1,90	0,23
F10-F9	PEAD	200	84,73	0,0040	0,50	0,18
F9-F8	PEAD	200	91,90	0,0361	1,11	0,14
F8-F7	PEAD	200	91,92	0,0492	1,40	0,14
F7-F6	PEAD	200	91,92	0,0109	0,9	0,2
F6-F5	PEAD	200	73,71	0,0040	0,67	0,29
F5-F4	PEAD	200	73,78	0,0040	0,70	0,31
F4-F3	PEAD	250	70,93	0,0013	0,61	0,57
F3-F2	PEAD	250	70,93	0,0263	1,85	0,26
F2-F1	PEAD	315	89,27	0,0194	1,89	0,26
F1-F0	PEAD	315	89,26	0,0035	1,03	0,42