Mostrar el registro sencillo del ítem

dc.contributor.authorPérez Díaz, Noel
dc.contributor.authorMartín González, Osmel
dc.contributor.authorCárdenas Ortiz, Rolando
dc.contributor.editorCárdenas Ortiz, Rolando
dc.contributor.editorMochalov, Vladimir
dc.contributor.editorParra, Oscar
dc.contributor.editorMartín González, Osmel
dc.coverage.spatialSwitzerlanden_US
dc.date.accessioned2019-03-11T15:32:29Z
dc.date.available2019-03-11T15:32:29Z
dc.date.issued2019
dc.identifier.citationCitar según la fuente original: 1. Richards F (1965) Anoxic basins and fjords. In: Riley JP, Skirrow G (eds) Chemical oceanography, vol 1. Academic Press, New York, pp 611–641 2. Cline, J.D and Richards, F.A.: Oxygen deficient conditions and nitrate reduction in the eastern tropical North Pacific Ocean. Limnol Oceanogr 17(6) 885–900 (1972) 3. Van der Star W (2008) Growth and metabolism of anammox bacteria. biofilms.bt.tudelft.nl/ pdf/EBTprVdStar.pdf 4. Heijnen JJ (1988) Biologische anaëroob-aërobe afvalwaterzuivering bij Gist-Brocades: eindrapport 1977–1986. ‘s-Gravenhage, NL, Staatsuitgeverij/DOP. ISBN 978 90 346 1686 X 5. Mulder A (1989) Anoxic ammonia oxidation of wastewater. European Patent Ep327184. Assignee: Gist-Brocades NV, NL 6. Van de Graaf AA, Mulder A, Slijkhuis H, Robertson LA, Kuenen JG (1990) Anoxic ammonium oxidation. Proc Eur 5th Congr Biotechnol I:388–391 7. Mulder A, Van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16(3): 177–184 8. Hippen A, Rosenwinkel KH, Baumgarten G, Seyfried CF (1996) Aerobic deammonification: a new experience in the treatment of wastewaters. Mededelingen - Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen (Universiteit Gent) 61(4b) 1967–1974 9. Hippen A, Rosenwinkel KH, Baumgarten G, Seyfried CF (1997) Aerobic de-ammonification: anew experience in the treatment of wastewaters. Water Sci Technol 35(10):111–120 10. Binswanger S, Siegrist H, Lais P (1997) Simultane Nitrifikation/Denitrifikation von stark ammoniumbelasteten Abwassern ohne organische Kohlenstoffquellen [Simultaneous nitrification/denitrification of wastewaters polluted with high levels of ammonium in the absence of organic carbon sources]. Korresp Abwasser 44(9):1573–1580 11. Wong CH, Barton GW, Barford JP (2003) The nitrogen cycle and its application in wastewater treatment. Handbook of water and wastewater microbiology. Academic Press, London 12. Güven D, Schmidt I (2009) Specific activity and viability of Nitrosomonas europaea during discontinuous and continuous fermentation. Process Biochem 44(5):516–520 13. Carvajal-Arroyo JM (2013) Inhibitory impact of nitrite on anaerobic ammonium oxidizing (anammox) bacteria: inhibition mechanisms and strategies to improve the reliability of the anammox process as a N-removal technology. University Libraries, The University of Arisona. http://hdl.handle.net/10150/311350 14. Metcalf E, Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering: treatment and reuse. McGraw-Hill, Boston 15. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJM, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M,Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MSM, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440(7085): 790–794 16. Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400(6743):446–449 17. Schmid M, Schmitz-Esser S, Jetten M, Wagner M (2001) 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ Microbiol 3(7):450–459 18. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Damste JSS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422(6932):608–611 19. Kartal B, Rattray J, van Niftrik LA, van de Vossenberg J, Schmid MC, Webb RI, Schouten S, Fuerst JA, Damste JSS, Jetten MSM, Strous M (2007) Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 30(1):39–49 20. Quan ZX, Rhee SK, Zuo JE, Yang Y, Bae JW, Park JR, Lee ST, Park YH (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10(11):3130–3139 21. Schmid MC, Risgaard-Petersen N, van de Vossenberg J, Kuypers MMM, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T, Rysgaard S, Sejr MK, Strous M, den Camp HJMO, Jetten MSM (2007) Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol 9(6):1476–1484 22. Rich J, Dale O, Song B, Ward B (2008) Anaerobic ammonium oxidation (Anammox) in Chesapeake Bay sediments. Microb Ecol 55(2):311–320 23. Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MMM (2006) Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol 8(10):1857–1863 24. Zhang Y, Ruan X-H, den Camp HJMO, Smits TJM, Jetten MSM, Schmid MC (2007) Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi River (China). Environ Microbiol 9(9):2375–2382 25. Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, Jørgensen BB, Jetten MSM (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA 102(18):6478–6483 26. Van de Graaf AA, de Bruijn P, Robertson LA, Jetten MSM, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142(8):2187–2196 27. Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1996) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol 50(5):589–596 28. Isaka K, Date Y, Sumino T, Yoshie S, Tsuneda S (2006) Growth characteristic of anaerobic ammonium-oxidizing bacteria in an anaerobic biological filtrated reactor. Appl Microbiol Biotechnol 70(1):47–52 29. Van der Star WRL, Miclea AI, van Dongen U, Muyzer G, Picioreanu C, van Loosdrecht MCM (2008) The membrane bioreactor: A novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng 101(2):286–294 30. Kartal B, van Niftrik L, Sliekers O, Schmid MC, Schmidt I, van de Pas-Schoonen K, Cirpus I, van der Star W, van Loosdrecht M, Abma W, Kuenen JG, Mulder J-W, Jetten MSM, den Camp HO, Strous M, van de Vossenberg J (2004) Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria. Rev Environ Sci Biotechnol 3(3):255–264 31. Kartal B, Maalcke WJ, de Almeida NM, Cirpus I, Gloerich J, Geerts W, Op den Camp HJM, Harhangi HR, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG, Keltjens JT, Jetten MS, Strous M (2011) Molecular mechanism of anaerobic ammonium oxidation. Nature 479:127–130 32. Kuypers MMM, van Breugel Y, Schouten S, Erba E, Damsté JSS (2004) N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology 32:853–856 33. Tyrrell T, Merico A, Armstrong M, Kay DI (2015) Severity of ocean acidification following the end-Cretaceous asteroid impact. PNAS 112:6556–6561 34. Tyrrell T, Merico A, Armstrong M, Kay DI (2015) Supporting information online at http://www.pnas.org/lookup/suppl/, https://doi.org/10.1073/pnas.1418604112/-/dcsupplemental 35. Perez N, Cardenas R, Martin O, Rojas R (2013) Modeling the onset of fotosynthesis after the Chicxulub asteroid impact. Astrophys Space Sci 343:7–10 36. Pierazzo E, Hahmann AN, Sloan LC (2003) Chicxulub and climate: Radiative perturbations of impact-produced S-bearing gases. Astrobiology 3(1):99–118 37. Pope KO, Baines KH, Ocampo AC, Ivanov BA (1994) Impact winter and the Cretaceous/Tertiary extinctions: results of a Chicxulub asteroid impact model. Earth Planet Sci Lett 128(3):719–725 38. Ohno S, Kadono T, Kurosawa K, Hamura T, Sakaiya T, Shigemori K, Hironaka Y, Sano T, Watari T, Otani K, Matsui T, Sugita S (2014) Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification. Nat Geosci 7(4):279–282 39. Doney SC et al (2007) Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proc Natl Acad Sci USA 104(37):14580–14585 40. Schulte P et al (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327(5970):1214–1218 41. O’Keefe JD, Ahrens TJ (1989) Impact production of CO2 by the Cretaceous Tertiary extinction bolide and the resultant heating of the earth. Nature 338(6212):247–249 42. Yancey TE, Guillemette RN (2008) Carbonate accretionary lapilli in distal deposits of the Chicxulub impact event. Geol Soc Am Bull 120(9–10):1105–1118 43. Agrinier P, Deutsch A, Schärer U, Martinez I (2001) Fast back-reactions of shock-released CO2 from carbonates: An experimental approach. Geochim Cosmochim Acta 65(15): 2615–2632 44. Goldin TJ, Melosh HJ (2009) Self-shielding of thermal radiation by Chicxulub impact ejecta: firestorm or fizzle? Geology 37(12):1135–1138 45. Morgan J, Artemieva N, Goldin T (2013) Revisiting wildfires at the K-Pg boundary. J Geophys Res-Biogeo 18(4):1508–1520 46. Vellekoop J et al (2014) Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary. Proc Natl Acad Sci USA 111(21):7537–7541 47. Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404(6780):858–861 48. DeConto RM et al (2012) Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484(7392):87–91en_US
dc.identifier.urihttp://dspace.uclv.edu.cu:8089/handle/123456789/10872
dc.description.abstractThe activity of anammox bacteria (AA) can be estimated based on the production of N2. Known the mechanism of the catabolic reaction, three differential equations are established according to the most important substrates (NO 3 and NHþ 4 ) and the pH. The solution of this system might provide a rough estimate of the activity of the anammox, since neither inhibitory effects nor efficiency of the microorganisms is considered. Anammox can be inhibited by ocean acidification, generated by the deposition of H2SO4 and HNO3 during asteroid impact events such as Chicxulub. The magnitude of the inhibition depends on the amount and speed with which the H2SO4 is added fundamentally.en_US
dc.language.isoen_USen_US
dc.publisherSpringeren_US
dc.rightsEste documento es Propiedad Patrimonial de la Springer Nature Switzerland AG y se deposita en este Repositorio solo con fines académicos y exclusivamente para usuarios de la UCLV hasta tanto sea liberado por la editorial Springer Nature Switzerland AG, respetando la legislación vigente en Cuba sobre derecho de Autor y la política de acceso de la mencionada editorial.en_US
dc.subjectAnammox Activityen_US
dc.subjectOcean Acidificationen_US
dc.subjectAsteroid Impacten_US
dc.subject.otherEarth and Planetary Astrophysicsen_US
dc.subject.otherAtmospheric and Oceanic Physicsen_US
dc.subject.otherGeophysicsen_US
dc.titlePotential changes on anammox activity after Chicxulub asteroid impacten_US
dc.typeBook-Chapteren_US
dc.rights.holderSpringer Nature Switzerland AGen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-04233-2_7en_US
dc.contributor.departmentUniversidad Central "Marta Abreu" de Las Villas. Departamento de Físicaen_US
dc.source.initialpage67en_US
dc.source.endpage78en_US


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Theme by 
@mire NV