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a b s t r a c t

Two-dimensional bond-based linear indices and linear discriminant analysis are used in this report to
perform a quantitative structureeactivity relationship study to identify new trypanosomicidal compounds.
A database with 143 anti-trypanosomal and 297 compounds having other clinical uses, are utilized to
develop the theoretical models. The best discriminant models computed using bond-based linear indices
provides accuracies greater than 90 for both training and test sets. Our models identify as anti-trypano-
somals five out of nine compounds of a set of already-synthesized substances. The in vitro anti-trypano-
somal activity of this set against epimastigote forms of Trypanosoma cruzi is assayed. Both models show
a perfect agreement between theoretical predictions and experimental results. The compounds identified
as active ones show more than 98% of anti-epimastigote elimination (AE) at a concentration of 100 mg/mL.
Besides, three compounds show more than 70% of AE at a concentration of 10 mg/mL. Finally, compounds
with the best “activity against epimastigote forms/unspecific cytotoxicity” ratio are evaluated using an
amastigote susceptibility assay. It should be noticed that, compound Va7-71 exhibit a 100% of intracellular
amastigote elimination and shows similar activity when compared to a standard trypanosomicidal as
nifurtimox. Finally, we can emphasize that, the present algorithm constitutes a step forward in the search
for efficient ways of discovering new anti-trypanosomal compounds.

� 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

Trypanosomiasis and leishmaniasis are parasitic diseases that
cause severe infections in humans and domestic animals in the
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tropics. These infections pose a serious health problem for the
countries in tropical regions, in terms of the suffering they inflict
and the effects on their economies [1,2]. In particular, Chagas’
disease (American Trypanosomiasis) caused by the protozoan
parasite Trypanosoma (Schyzotrypanum) cruzi, is the largest para-
sitic disease to burden the American Continent. The morbidity and
mortality associatedwith this disease in America aremore than one
order of magnitude higher than those caused by malaria, schisto-
somiasis, or leishmaniasis.

Chagas disease is one of the highest disease burden Neglected
Tropical Disease’s in Latin America and Caribbe (LAC) [3e7]. Almost
all of the 8e9 millions cases of Chagas disease [3,4] (with approx-
imately 50,000 new cases annually [4]) occur in poor rural zones
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Table 1
Prediction performances for LDA-based QSAR models for training and test sets.

Models Matthews Corr.
Coefficient (C)

Accuracy
‘QTotal’ (%)

Specificity
(%)

Sensitivity
‘hit rate’ (%)

Training set
Eq. 1 0.79 90.46 84.25 89.17
Eq. 2 0.82 91.33 84.09 92.50
Test set
Eq. 1 0.83 92.55 76.67 100.00
Eq. 2 0.79 90.43 71.88 100.00
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and, increasingly, many new urban and peri-urban areas of Latin
America. It is estimated that up to 5.4 million people will develop
chronic Chagas heart disease [5,8], while 900,000 will develop
megaesophagus and megacolon [8]. In LAC, the burden of disease
caused by T. cruzi infection is between five and ten times greater
than malaria [6].

At present, the chemotherapy of this parasitic infection
remains undeveloped. The classical treatments are based on old
and quite unspecific drugs that have significant activity in only
the acute phase of the disease and, when associated with long-
term treatments, give rise to severe side effects [9]. The
current synthetic drugs such as nifurtimox(a nitrofuran deriva-
tive) and benznidazole (a nitroimidazole derivative), are asso-
ciated to severe side effects, including psychosis, leucopenia,
neurotoxicity, peripheral neuropathy lymphadenopathy, agran-
ulocytosis, thrombocytopenic purpura, articular and muscular
pain [10e12]. Their efficacy also varies according to geographical
areas, mainly because of differences in drug susceptibility of
different Trypanosoma cruzi strains [13,14]. Once the disease has
progressed to later stages, no medication has consistently
proven to be effective [15]. That said above showed the need to
search new effective chemotherapeutic and chemoprophylactic
agents against T. cruzi.

With the cost of new drug discovery exceeding $800 million
per new chemical entity [16], novel therapeutics for endemic
diseases in the third world would seem out of reach. If academia
is to play a role in the discovery and development of drugs for
socially imperative but financially challenging conditions, new
development paradigms must evolve [17]. Since the cost of
creating, maintaining, and screening large compound libraries is
high, we have chosen as alternative the development of
computational approaches based on discriminate functions.
These allows the previous in silico identification from large
chemical libraries of structural subsystems responsible for
a given property or biological activity with a considerable
reduction in costs, time and efforts in order to select a new drug
candidate.

Moreover, a novel scheme for the rational in silico molecular
design (or selection/identification of chemicals) and for QSAR/
QSPR (Quantity Structure Activity/Property Relationship) studies
has been introduced in recent years by our research team: the so-
called TOpological MOlecular COMputer DesigneComputer Aided
Rational Drug Design (TOMOCOMDeCARDD) [18e23]. This
approach, which is based on principles of novel methods in
chemical graph and algebraic theories, has been successfully used
for the description of different physical, chemo-physical, and
chemical properties of organic compounds [20,24,25], as well as to
the prediction of, pharmacokinetical [26,27], biological [28e35]
and toxicological [36] properties. In addition, this method has
been applied to studies in the field of proteomics and nucleic
acidedrug interactions [37,38]. Furthermore, these molecular
descriptors (MDs) have been extended to consider three-
dimensional (3D) features of small/medium-sized molecules
based on the trigonometric-3D-chirality-correction factor
approach [39e43].

In the present report, bond-based non-stochastic and stochastic
linear indices are used to find classification models that allow the
discrimination of anti-trypanosomal compounds. This present
approach permits the rational identification of those candidates to
be evaluated, which have the highest probabilities of being active
ones. Therefore, nine already-synthesized compounds were then in
silico evaluated and, after that, in vitro assayed against epimastigote
forms of T. cruzi. Cytotoxic studies were also conducted, as a selec-
tion criterion of compounds for further anti-amastigote in vivo
assays.
2. Results and discussion

2.1. Development and validation of the discriminant functions

The data set used in this study consists of 440 compounds of
great structural variation, 143 actives against trypanosome and 297
with other uses. The general data set was randomly divided into
two subsets, training and test set (which have 346 and 94
compounds, respectively), each other containing active and inac-
tive compounds. In order to derive discriminant functions that
permit the classification of chemicals as active (anti-trypanosomal)
or inactive, we used the Linear discriminant analysis (LDA) [44] in
which bond-based non-stochastic and stochastic linear indices
were used as independent variables. The LDA was chosen as
a statistical technique because of its simplicity andwide application
in chemometric studies [22,27,29,32,45e47]. Two LDA-QSAR
models were obtained through the LDA module implemented in
STATISTICA 6.0 [48], classifying the compounds as either active or
inactive.

The best discriminant functions obtained using bond-based
non-stochastic and stochastic linear indices as molecular descrip-
tors, together with their statistical parameters are given below,
respectively:

Class ¼ �6:19þ 7:51� 10�1pf H0 ðxÞ � 2:07� 10�3pf H5Lðx EÞ
þ7:64� 10�2Vf0Lðx EÞ þ 5:90� 10�9pf H13Lðx EÞ
�4:96� 10�4V f H4 ðxÞ þ 3:19� 10�3Kf H4 ðxÞ
�3:82� 10�1K f0Lðx EÞ ð1Þ

N ¼ 346 l ¼ 0:40 D2 ¼ 6:33 F ¼ 69:71 p< 0:0001

Class ¼ �5:56þ 5:32� 10�2Msf H0 ðxÞ � 6:49� 10�5MSfH6Lðx EÞ
�2:16� 10�5MSfH5 ðxÞ þ 6:20� 10�7MSfH9Lðx EÞ
þ2:25� 10�2Msf0Lðx EÞ ð2Þ

N ¼ 346 l ¼ 0:43 D2 ¼ 5:61 F ¼ 87:02 p < 0:0001

where N is the number of compounds, l is the Wilks’ statistic, D2 is
the square Mahalanobis distance and F is the Fisher ratio. The
statistical analysis showed that there exists an appropriate
discriminating power to distinguish between each other groups.

The equations appeared statistically significant at p < 0.001.
The best non-stochastic model (Eq. (1)), which includes non-
stochastic indices, has a good overall accuracy of 90.46% for the
training set (See Table 1). In addition, this model showed an
adequate Matthews’ correlation coefficient (MCC) of 0.79; MCC
quantifies the strength of the linear relation between the molec-
ular descriptors and the classifications, and usually it may provide
a much more balanced evaluation of the prediction than, for
instance, the percentages (accuracy). Together with the accuracy,
sensitivity, specificity, and false-positive rate (also known as
‘false-alarm rate’) are among the most commonly used



Table 2
Compounds evaluated in the present study, their classification (ΔP%) according to the obtained models, their anti-trypanosomal activity and cytotoxicity at three different
concentrations (100, 10, and 1 mg/mL) and anti-trypanosomal activity of nifurtimox (reference).

Compounda Exp.b cΔP Eq. 1 dΔP Eq. 2 %AE (SD)e %CIf %AA (SD)g

100 mg/mL 10 mg/mL 1 mg/mL 100 mg/mL 10 mg/mL 1 mg/mL 100 mg/mL 10 mg/mL 1 mg/mL

Vax-12 I �98.82 �86.28 26.2 � 2.4 34.0 � 2.0 27.2 � 0.1 np np np np np np
Vax-14 I �84.41 �62.33 34.5 � 0.3 30.1 � 0.3 17.8 � 0.1 np np np np np np
Va7-34 I �43.31 �6.73 70.5 � 0.9 40.8 � 3.1 21.0 � 4.7 29.0 � 0.8 7.4 � 1 0 � 3.9 np np np
Va7-35 I �37.50 �1.17 47.5 � 2.5 42.9 � 0.6 27.7 � 1.4 64.5 � 1.8 32.3 � 2.7 0 � 3.8 np np np
Va7-37 A 73.03 86.39 100 � 0.8 96.2 � 0.9 43.8 � 2.2 76.6 � 3.8 75.8 � 2.7 4.7 � 5.2 np np np
Va7-38 A 60.57 74.32 100 � 1.5 74.4 � 1.0 28.1 � 0.9 95.9 � 0.1 48.5 � 0.2 np np np np
Va7-68 A 7.33 49.65 99.0 � 0.9 69.1 � 2.1 19.9 � 5.1 96.8 � 0.3 0 � 0.9 np np 39.33 � 2.12 np
Va7-70 A 94.84 33.91 100 � 1.3 51.2 � 2.5 25.7 � 1.5 80.7 � 0.1 63.9 � 1.3 np np np np
Va7-71 A 82.71 86.79 100 � 0.8 100 � 1.1 65.5 � 0 14.5 � 1.2 0 � 1.5 0 � 0.6 100 � 1.12 56.21 � 3.25 35.39 � 2.12
nifurtimox 98.7 � 0.5 90.0 � 1.8 75.5 � 3.9 25.9 � 3.9 0.6 � 3.9 0.0 � 2.1 100 � 0.21 94.44 � 0.42 88.14 � 0.81

a The micromolar concentration (mM) of compounds at 100 mg/mL was the following: Vax-12 (335.9); Vax-14 (482.6); Va7-34 (352.5); Va7-35 (335.9); Va7-37 (289.2); Va7-
38 (281.4); Va7-68 (335.9); Va7-70 (306.9); Va7-71 (277.9); nifurtimox(348.1).

b Observed activity. A: active and I: inactive.
c Results of the classification of compounds obtained from Model 1, DP% ¼ [P(active) - P(inactive)] � 100.
d Results of the classification of compounds obtained from Model 2, DP% ¼ [P(active) - P(inactive)] � 100.
e Anti-epimastigotes percentage and standard deviation (SD).
f Cytotocicity percentage.
g Anti-amastigotes percentage and standard deviation (SD) np: not performed.
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parameters in medical statistics. While the sensitivity is the
probability of correctly predicting a positive case, the specificity
(also known as ‘hit rate’) is the probability of that a positive
prediction is correct [49].

The non-stochastic model showed, for the training set, a good
value of sensitivity of 89.17%, a specificity value of 84.25% and
a false-positive rate of only 8.85% (Table 1). Nevertheless, the most
important criterion, for the acceptance or not of a discriminant
model, is based on statistics for the external prediction set. For the
test set, the non-stochastic model showed an accuracy of 92.55%,
MCC of 0.83, a good value of sensitivity of 100% and a specificity
value of 76.67%.

On the other hand, the best stochastic model (Eq. (2)) presents
a good overall accuracy of 91.33% with a good value of MCC of 0.82
for the training set. These values are slightly better than those
obtained with the non-stochastic model. The achieved values for
sensitivity and specificity were 92.50% and 84.09%, respectively, as
well as a false-positive rate of only 9.86%. For the test set the results
of the stochastic model were an accuracy of 90.43%, MCC of 0.79,
sensitivity of 100%, and specificity of 71.88%; these values are
acceptable, but lower than those obtained with bond-based non-
stochastic linear indices. All these values are reported in Table 1.
The results of the classification for compounds in both, training and
test, sets achieved with Eqs. 1 and 2 can be seen in the Supporting
Information (Tables S1-S4).
Fig. 1. Molecular structures of experi
2.2. Biosilico identification of novel anti-trypanosomals and
experimental corroboration

The entire algorithm, described in the sections above, was made
up with the main objective to explore the possibilities of the
current in silico approach for the identification of ‘hits’ (pro-lead
compounds) from large databases. Therefore, an in silico screening
of novel compounds was performed looking for the biological
activity concerning this work. In order to carry this out, a pool of
compounds never described in the literature as anti-trypanosomal
agents was chosen. We evaluated nine compounds with the QSAR
models developed in this work and, in order to corroborate the
theoretical predictions of the previously synthesized chemicals [50]
some in vitro assays were performed (for details of these assays, see
Experimental Section). Moreover, we proceeded to test the
compounds in an epimastigote susceptibility (in vitro) assay [51].
After this preliminary in vitro test, the unspecific cytotoxicity was
determined against macrophages at the concentrations that were
used in the previous assay [52,53]. Finally, the compounds that
showed the best “activity against epimastigote forms/unspecific
cytotoxicity” ratio were evaluated in an amastigote susceptibility
assay as we described above.

The DP% values of the compounds in the data set using all the
discriminant functions and the chemical structures are depicted in
Table 2 and Fig. 1, respectively. Hence here we can see that it exits
mentally evaluated compounds.
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a perfect agreement between the theoretical predictions and the
experimental results for all the organic-chemicals. Compound Va7-
34 was classified as inactive by the models, although its activity
value (at 100 mg/mL) against epimastigote was rather close to the
decision margin for this kind of assays. Furthermore, the four
compounds (Vax-12, Vax-14, Va7-34 and Va7-35) previously clas-
sified by our models as inactive turned out to be experimentally
inactive. On the other hand, the five other compounds (Va7-37, Va7-
38, Va7-68, Va7-70 and Va7-71) of the data set were classified as
active by our two models (Eqs. 1 and 2) showing more than 98% of
anti-epimastigote elimination at a concentration of 100 mg/mL (see
Table 2 for details). However, only the compoundVa7-71 out of these
five substances shows a low value (14.5%) of cytotoxicity in macro-
phages at a concentration of 100 mg/mL.Moreover, three compounds
of this group showed more than 70% of anti-epimastigote activity at
a concentration of 10 mg/mL (Va7-37, Va7-38, and Va7-71) and
substance Va7-68 showed a value near to the cutoff value (69.1% of
anti-epimastigote percentage). Compounds Va7-37 and Va7-38
showed high values of cytotoxicity (75.8% and 48.5%, respectively,
at 10 mg/mL), while substance Va7-68 was practically no-cytotoxic at
this concentration aswell as compound Va7-71. It is remarkable that,
compound Va7-71 showed similar potency than nifurtimoxat
concentrations of 100 mg/mL and 10 mg/mL.

Finally, taking into account the results achieved in the epi-
mastigote susceptibility assay and the unspecific cytotoxicity
against macrophages, we select both compounds above to be
evaluated an amastigote susceptibility assay. In this assay we only
use the concentrations in which they showed the best “activity
against epimastigote forms/unspecific cytotoxicity” ratio, for
compound Va7-68 it was 10 mg/mL and for the compound Va7-71
the three concentrations (100, 10 and 1 mg/mL) were used. All
these results can be seen in Table 2. However in this section we
discuss briefly the result obtained with compound Va7-71. This
compound shows a 100% of anti-amastigotes elimination at the
highest concentration; notice that, in the anti-amastigote assay this
compound exhibited similar activity when compared to nifurtimox,
which was used as reference structure.

The result above is a rather promising starting point for the
future design and optimization of new compounds with anti-
trypanosomal activity. Moreover, compound Va7-71 presented
similar potency and lesser toxicity in the in vitro assays than the
reference drug nifurtimox. This outcome opens the door to a virtual
study of this structural pattern in order to improve the search for
drug-like compounds with anti-trypanosomal activity. Finally, it is
important to remark that our aim in this study is to show how the
models could be useful for potential drug discovery.

3. Conclusions

In conclusion, the introduction and use of graph-theoretical
MDs are attractive and efficient for research in drug design.
Herein we present a new set of molecular descriptors, namely
bond-based non-stochastic and stochastic linear indices, imple-
mented in the TOMOCOMDeCARDD software, and their applica-
tion to discriminate between active compounds and inactive ones
as anti-trypanosomal. This method permits a good prediction of the
biological property under consideration, thus increasing the like-
lihood of an in silico discovery of new candidate lead compounds
andminimizing the use of resources. Moreover, five out of nine new
compounds, subjected to in silico screening, were identified with
anti-trypanosomal activity. Later, several in vitro experiments were
performed to corroborate the reliability of the classification func-
tions developed in this report. Finally, we can say that, the present
algorithm constitutes a step forward in the search for efficient ways
of discovering new anti-trypanosomal compounds.
4. Experimental section

4.1. Data base selection

The general data set used in this study consists of 440
compounds of great structural variation, 143 of which have re-
ported activity against trypanosome; the remaining are inactive.
The anti-trypanosomals considered in this study are representative
of families with diverse structural patterns and were collected from
previous works [33,35,54e71]. The names of compounds in the
database together with their experimental data taken from the
literature are given in the Supporting Information (Tables S1 and
S3). The molecular structures of these 143 anti-trypanosomal
agents are listed in Figures S1 and S2 of the Supporting Informa-
tion. Moreover, it is remarkable that the wide variability of drugs
and mechanisms of action of active compounds in the training and
prediction sets assures adequate extrapolation power and increases
the possibility of the discovery of new lead compounds with novel
mechanisms of action of anti-trypanosomal substances, one of the
most critical aspects in the construction of non-congeneric data.

On the other hand, 297 compounds having different clinical uses
such as antivirals, sedative/hypnotics, diuretics, anticonvulsants,
hemostatics, oral hypoglycemics, anti-hypertensives, anti-
helminthics and anticancer compounds as well as some other kinds
of drugs were selected for the set of inactive compounds through
random selection, guaranteeing great structural variability as well.
All these compounds were taken from the Negwer Handbook [72]
and Merck Index [73] in which their names, synonyms, and struc-
tural formulas can be found. The classification of these organic
compounds as ‘inactive’ (non-anti-trypanosomal) does not guar-
antee that all are truly so; some of them may have trypanomicidal
activity that is undetected. This limitation can be reflected in the
results of classification for the series of inactive compounds [46].

4.2. Computational strategies

The theory of the bond-based linear indices used in this study
was discussed in detail in previous research reports [22,74].
Specifically, the CARDD module implemented in the TOMOCOMD
Software [18] was used in the calculation of bond-based non-
stochastic and stochastic linear indices. In this study, the properties
used to differentiate the molecular atoms are those previously
proposed for the calculation of the DRAGON descriptors [75e77],
i.e., atomic mass (M), atomic polarizability (P), atomic Mulliken
electronegativity (K), van der Waals atomic volume (V), plus the
atomic electronegativity in Pauling scale (G) [78].

The bond-based linear indices descriptors computed in this
study were the following:

1) kth (k ¼ 15) total non-stochastic bond-based linear indices, not
considering and considering H-atoms in the molecular graph
(G) [fk(w) and fkH(w), respectively].

2) kth (k ¼ 15) total stochastic bond-based linear indices, not
considering and considering H-atoms in the molecular graph
(G) [sfk(w) and sfkH(w), respectively].

3) kth (k ¼ 15) bond-type local (group ¼ heteroatoms: S, N, O)
non-stochastic linear indices, not considering and considering
H-atoms in the molecular graph (G) [fkL(w E) and fkLH(w E),
correspondingly]. These local descriptors are putative molec-
ular charge, dipole moment, and H-bonding acceptors.

4) kth (k ¼ 15) bond-type local (group ¼ heteroatoms: S, N, O)
stochastic linear indices, not considering and considering H-
atoms in the molecular graph (G) [sfkL(w E) and sfkLH(w E),
correspondingly]. These local descriptors are also putative
molecular charge, dipole moment, and H-bonding acceptors.
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4.3. Chemometric methods

LDA was performed with software package STATISTICA [48].
Forward stepwise was selected as the strategy for variable selec-
tion. The quality of the models was determined by examining
Wilks’ l parameter (U-statistic), square Mahalanobis distance (D2),
Fisher ratio (F) and the corresponding p-level (p(F)) as well as the
percentage in training and test sets of global good classification,
Matthews’ correlation coefficient (MCC), sensitivity, specificity,
negative predictive value (sensitivity of the negative category) and
false-positive rate (false alarm rate). Models with a proportion
between the number of cases and variables in the equation lower
than five were rejected. The statistical robustness and predictive
power of the obtained model was assessed using an external
prediction (test) set.

4.4. In vitro determination of trypanosomicidal activity and
cytotoxicity

4.4.1. Parasites and culture procedure
The CL (clone) strain parasites (CL-B5) stably transfected with

the Escherichia coli b-galactosidase gene (LacZ) were used for the
assays. Epimastigotes were grown at 28 �C in liver infusion tryptone
(LIT) broth with 10% foetal bovine serum (FBS), penicillin and
streptomycin.

4.4.2. Epimastigotes susceptibility assay
The screening assay was performed in 96-well microplates with

culture that had not reached the stationary phase. Epimastigote
forms, CL strain, were seeded at concentration of 1 �105 per mL in
200 mL. The plates were then incubated at 28 �C for 72 h with
different concentrations of the drugs (100, 10, and 1 mg/mL), at
which time 50 mL of CPRG (chlorophenol red-BETA-D-galactopyr-
anoside) solution was added to give a final concentration of
200 mM. The plates were incubated at 37 �C for 6 h and were then
spectrophotometrically read at 595 nm. Each concentration was
assayed in triplicate. In order to avoid drawbacks, medium, nega-
tive and drug controls were used in each test. The anti-
epimastigotes percentage (%AE) was calculated as follows: %
AE ¼ [(AE�AEB)/(AC�ACB)] � 100, where AE ¼ absorbance of
experimental group; AEB ¼ blank of compounds; AC ¼ absorbance
of control group; ACB ¼ blank of culture medium. The cutoff value
for actives compounds was 70% of AE. Stock solutions of the
compounds to be assayed were prepared in DMSO (dimethylsulf-
oxide), with the final concentration in amixturewater/DMSO never
exceeding 0.2% of the latter solvent [51].

4.4.3. Cytotoxicity assays
Murine J774macrophageswere grown in plastic 25 cm2

flasks in
Roswell Park Memorial Institute (RPMI)-1640 medium (Sigma)
supplemented with 20% heat-inactivated (30 min, 56 �C) FBS and
100 IU penicillin/mL þ 100 mg/mL streptomycin, in a humidified 5%
CO2/95% air atmosphere at 37 �C and subpassaged once aweek. The
procedure for cell viability measurement was evaluated with
resazurin by a colorimetric method. The J774 macrophages were
seeded (5 � 104 cells/well) in 96-well flat-bottommicroplates with
a volume of 100 mL of RPMI 1640medium. The cells were allowed to
attach for 24 h at 37 �C, 5% CO2 and the medium was replaced by
different concentrations of the drugs in 200 mL of medium, and
exposed for another 24 h. Growth controls were also included.
Afterwards, a volume 20 mL the 1 mM resazurin solutionwas added
and plates were returned to incubator for another 3 h to evaluate
cell viability. The reduction of resazurin was determined by dual-
wavelength absorbance measurement at 490 nm and 595 nm.
Background was subtracted. Each concentration was assayed in
triplicate. Medium and drug controls were used in each test as
blanks. Cytotoxicity percentages (%C) were determined as follows:

%c ¼ ððA570 � 117;216� A595

� 80;586Þof test compounds=ðA570 � 117;216� A595

� 80;586Þof untreated positive growth controlÞ � 100

where A570 and A595 represent the means values of optical density
at 570 and 595 nm, respectively, recorded for wells with macro-
phages containing different doses of compounds or value recorded
for wells with macrophages and no compounds (positive growth
controls), 80,586 and 117,216 represents molar extinction coeffi-
cients for oxidized resazurin at 570 and 595 nm, respectively.

4.4.4. Amastigotes susceptibility assay
The NCTC-929 (The National Collection of Type Cultures Clone

929) fibroblasts were established in 24-well tissue culture plates at
a previously determined optimal concentration of 2.5 � 103 cells/
well. The NCTC-929-derived trypomastigotes were added to the
monolayers at parasite:cell ratio of 1:8 and incubated for 24 h at
33 �C with 5% CO2. The infected cells were then washed twice with
PBS solution, so removing extracellular trypomastigotes. The drugs
were added in triplicate to give a final volume of 900 mL/well. The
plates were incubated for 7 days at 33 �C. After this time, 100 mL
chlorophenol red-b-D-galactopyranoside (CPRG; Roche, Indian-
apolis, Ind.) solution (final concentration of 400 mM) in 0.3% Triton
X-100 (pH 7.4) was added. After 4 h of incubation at 37 �C, the
colorimetric reaction was quantified as optical density (OD) at
595 nm. The amastigote inhibition percentage (%AA) was calculated
as follows: %AA ¼ 100 � (OD experimental wells/OD control
wells) � 100. Background controls (only NCTC-929 cells) were
subtracted from all the values.
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