UNIVERSIDAD CENTRAL "MARTA ABREU" DE LAS VILLAS FACULTAD DE INGENIERIA MECÁNICA CENTRO DE INVESTIGACIONES DE SOLDADURA

Trabajo de Diploma

ESTUDIO MORFOMÉTRICO DEL CONCENTRADO DE PIROLUSITA

MEDIANTE EL PROCESAMIENTO DE IMÁGENES DIGITALES

Autor:

LENIER RUIZ MENA

Tutor:

Dr. JORGE L. GARCÍA JACOMINO

Santa Clara Curso 2012-2013

A mis padres por los sacrificios hechos para que me haga hombre de estudios y de bien.

A mí hermana por el apoyo que me brínda cada día.

A mís amigos por su comprensión y consejos, en especial a Annilié Manresa Bernal.

A mí tutor que dedicó su tiempo ayudándome a investigar y organizarme.

A los profesores de la Universidad que me ayudaron a fomentar conocimientos y formar mi moral.

Resumen

En el presente trabajo se realizó una revisión documental para establecer conocimientos sobre los parámetros morfométricos de las partículas y el procesamiento de imágenes digitales. Esta también se dirigió hacia un perfil de caracterización de materiales pulverulentos utilizando el software ImageJ. Se usó el concentrado de pirolusita como material de estudio y se procesaron las imágenes digitales obteniendo los parámetros globales (diámetro del área proyectada) y de objeto (circularidad). Se realizó un estudio inicial de molturabilidad de este mineral y se determinó la relación de carga y tiempo óptimos para el mayor volumen con fracción < 1,5 mm, así como la ecuación de regresión que relaciona estas variables. La molienda se realizó en un molino de cerámica con bolas de acero al manganeso solo por rodadura para evitar el impacto. Los resultados de la caracterización morfométrica realizadas por el software ImageJ v1.44 se procesaron mediante el software STATGRAPHICS v15.0 y se obtienen los estadísticos descriptivos, las distribuciones granulométricas y las funciones de distribución de las variables.

Summary

In this paper, a literature review was conducted to establish knowledge of the morphometric parameters of the particles and digital image processing. This also led to a profile of powdery materials characterization using the ImageJ software. Pyrolusite concentrate was used as a study material and processed digital images by obtaining global parameters (diameter of projected area) and the object (circularity). A study initial of milling of this mineral and determined the charge ratio and optimal time for the greatest volume of fraction <1.5 mm, and the regression equation that relates these variables. The milling was performed in a ceramic mill with manganese steel balls by rolling only to prevent the impact. The results of morphometric characterization performed by the software ImageJ v1.44 software processed using STATGRAPHICS v15.0 and descriptive statistics are obtained, the particle size distributions and the functions of distribution of variables.

ÍNDICE

INTRODUCCIÓN	I
CAPÍTULO I. ESTUDIO DOCUMENTAL	1
1.1. Minerales pulverulentos	1
1.1.1. Técnicas de muestreo (Muestra y muestreo)	1
1.1.1.1. Procedimiento para tomar muestras	2
1.1.1.2. Muestreo en una rampa o de una cinta transportadora	3
1.1.1.3. Muestreo en una pila	3
1.1.1.4. Muestreo de materiales en un carro de carga	3
1.1.2. Reducción de la muestra para el análisis de tamizado	4
1.1.2.1. Apilando y cuarteando	5
1.1.2.2. Fraccionadores de muestra y reductores	6
1.1.3. Muestra experimental	7
1.1.3.1. Tamaño	7
1.1.3.2. Límites del peso	8
1.1.3.3. Determinación del tamaño de la muestra experimental	9
1.1.4. Caracterización de las partículas	9
1.1.4.1. Tamaño de partícula	10
1.1.4.1.1. Diámetros estadísticos	10
1.1.4.1.2. Tamaño medio de partícula	12
1.1.4.1.3. Precisión de distribución de tamaño	13
1.1.4.2. Morfología de la partícula	14
1.1.4.2.1. Factores de forma	15
1.1.4.2.2. Análisis de forma	17
1.1.4.2.3. Forma fractal	18
1.1.4.3. Densidad del polvo	19
1.1.4.4. Técnicas para el análisis granulométrico	20
1.1.4.4.1. Método estándar para la determinación del tamaño de grano	20
1.2. Procesamiento digital de imágenes	23
1.2.1. Fundamentos del proceso digital de imágenes	23
1.2.2. Dispositivos de captación de imágenes	25
1.2.3. Formato de imágenes	27

1.2.4. Proceso de imágenes	29
1.2.4.1. Paletas de colores	30
1.2.4.2. Operaciones puntuales	30
1.2.4.3. Operaciones locales	32
1.2.5. Segmentación de imágenes	33
1.2.6. Imagen binaria	34
1.2.7. Cuantificación	35
1.2.8.1. Software de procesamiento de imágenes digitales	39
1.2.8.1.1. Todo sobre ImageJ	39
1.3. Pirolusita	41
1.3.1. Propiedades químico-físicas de la pirolusita	41
1.3.2. Uso de la pirolusita en la industria	42
CAPÍTULO II MATERIALES Y MÉTODOS	44
2.1 Materias primas	44
2.1.1 Caracterización morfológica del mineral por análisis de imagen	44
2.1.2. Procesamiento mediante ImageJ	44
2.2 Toma de la muestra de pirolusita (muestreo)	45
2.2.1. Diseño y construcción de dispositivo de cuarteo	46
2.2.2 Diseño experimental para validar dispositivo de cuarteo. Procesamiento estadístico los resultados	co de 47
2.3 Procesamiento experimental para el estudio de molturabilidad de la pirolusita	48
2.3.1 Selección del molino de bolas y parámetros experimentales. Características de consumo	49
2.3.2 Diseño experimental para el estudio de molturabilidad	49
CAPÍTULO III ANÁLISIS Y DISCUSIÓN DE RESULTADOS	51
3.1. Validación experimental del dispositivo de cuarteo	51
3.1.1. Estadísticos descriptivos	51
3.1.2. Comparación de las desviaciones estándar	53
3.1.3. Prueba de Kolmogorov-Smirnov	54
3.2. Caracterización morfológica de la pirolusita	54
3.2.1. Procesamiento digital de la foto del concentrado de pirolusita	54

3.2.2. Cuantificación morfométrica del concentrado de pirolusita	56
3.2.2.1. Parámetros globales, análisis estadístico descriptivo del diámetro del área proyectado	56
3.2.2.2. Parámetros globales, análisis estadístico no paramétrico y paramétrico del diámetro del área proyectado	58
3.2.2.3. Parámetros del objeto, análisis estadístico descriptivo de la circularidad	60
3.2.2.4. Parámetros del objeto, análisis estadístico no paramétrico y paramétrico d circularidad	e la 62
3.3. Resultados de la molturabilidad del concentrado de pirolusita	64
3.3.1. Caracterización morfométrica de la fracción granulométrica de partida -5 +3 r	nm64
3.3.1.1. Parámetros globales, análisis estadístico descriptivo del diámetro del área proyectado de la fracción granulométrica de partida -5 +3 mm	64
3.3.1.2. Parámetros globales, análisis estadístico no paramétrico y paramétrico del diámetro del área proyectado de la fracción granulométrica de partida -5 +3 mm	l 66
3.3.1.3. Parámetros del objeto, análisis estadístico descriptivo de la circularidad de fracción granulométrica de partida -5 +3 mm	e la 67
3.3.1.4. Parámetros del objeto, análisis estadístico no paramétrico y paramétrico d circularidad de la fracción granulométrica de partida -5 +3 mm	e la 70
3.3.2. Análisis estadístico de los resultados de la molienda	71
3.3.3. Caracterización morfométrica de la fracción granulométrica > 1,5 mm	75
3.3.3.1. Parámetros globales, análisis estadístico descriptivo del diámetro del área proyectado de la fracción granulométrica > 1,5 mm	75
3.3.3.2. Parámetros globales, análisis estadístico no paramétrico y paramétrico del diámetro del área proyectado de la fracción granulométrica > 1,5 mm	77
3.3.3.3. Parámetros del objeto, análisis estadístico descriptivo de la circularidad de fracción granulométrica > 1,5 mm	e la 78
3.3.3.4. Parámetros del objeto, análisis estadístico no paramétrico y paramétrico d circularidad de la fracción granulométrica > 1,5 mm	e la 81
CONCLUSIONES	
RECOMENDACIONES	
BIBLIOGRAFÍA	
ANEXOS I-F	93
ANEXOS II-P	95
ANEXOS III-T	100

INTRODUCCIÓN

El desarrollo tecnológico actual implica el uso en todas las industrias de nuevos materiales. Para crear los mismos y mejorar sus propiedades es común utilizar una gran variedad de minerales tradicionales y tecnologías avanzadas [1]. La ciencia de los materiales es una de las ramas de la investigación donde existe un incremento casi exponencial de la aplicación de técnicas novedosas como lo es la nanotecnología, los materiales "inteligentes" y otros [2-9]. El mundo capitalista tiene el mayor monopolio en todos esos aspectos y no transfiere los conocimientos a los demás países, que como Cuba tienen la necesidad de desarrollar materiales y las tecnologías vinculadas a su producción.

No se puede hablar de investigación en el campo de los materiales, sin una adecuada caracterización química, fásica, morfológica, etc [10]. Estas técnicas de caracterización son evidentemente caras, a la vez que el software especializado es restringido. Estos elementos, unido a la necesidad económica de desarrollarnos en un entorno sustentable y sostenible, obliga a dar prioridad a los estudios que puedan tener provecho con bajos costos.

Por otra parte la imagen digital como técnica, ha revolucionado el mundo de la fotografía de consumo con alto impacto en la fotografía científica. Se ha incorporado a la práctica total en los equipos de microscopía electrónica de barrido, microscopía electrónica de trasmisión, microscopía de fuerza atómica y microscopía óptica y ha sustituido rápidamente a las tradicionales cámaras fotográficas con revelado químico [11].

A su vez que el avance en la rama de la computación, con la mejora de los implementos de las computadoras así como en la velocidad de procesamiento de datos, se producen nuevos software que permiten el trabajo más eficaz, en este caso se puede hacer referencia más explícita a los programas para el procesamiento digital de imágenes [12], esto trae como consecuencia una mejora indiscutible en la integración de los mismos en las investigaciones tanto en la medicina como en la industria mecánica.

Con la aplicación del procesamiento de imágenes digitales en la investigación se busca un avance más rápido y confiable que dé como resultado valores más aproximados a los reales en menos tiempo y una mayor comprensión de las diferentes funciones que se pueden llevar a cabo con los datos que se procesan en un estudio experimental. Muchas veces esta labor de medida se realiza de modo manual, estando sujeta la validez de los resultados a la fatiga del

operador que la realiza [13]. Sin embargo, reconocer, contar y medir tamaño, forma, posición, densidad y otro tipo de propiedades similares de determinados objetos presentes en una imagen, es algo que, actualmente, está al alcance de cualquier ordenador personal complementado con un "software" específico, realizando estas tareas de un modo mucho más rápido, preciso y reproducible.

Existen varios software que permiten realizar estas caracterizaciones, dentro de ellos se destaca el ImageJ, que tiene la ventaja de ser de dominio público, [14, 15], programado en Java desarrollado en el *National Institutes of Health*. [16] ImageJ fue diseñado con una arquitectura abierta que proporciona extensibilidad vía *plugins* Java y macros (macroinstrucciones) grabables. [17]

En la Universidad Central "Marta Abreu" de Las Villas, en el Centro de Investigaciones de soldadura (CIS), se han desarrollado distintos estudios de nuevos materiales con un alto grado de caracterización, no obstante las limitaciones de equipamiento restringen el desarrollo de nuevas investigaciones en esta rama. Dando lugar a la **situación problémica** de esta investigación, que radica en que no se cuenta con una herramienta para la caracterización morfométrica de minerales pulverulentos, a la vez que se necesita continuar investigando en nuevos materiales cerámicos y compuestos, donde estos aspectos influyen y/o determinan su desempeño.

Problema Científico

Se desconoce la relación de carga y el tiempo (óptimos) para moler el concentrado de pirolusita hasta una granulometría < 1,5 mm.

Hipótesis

Si se logra una relación óptima de la relación de carga y el tiempo de molienda se puede lograr un mayor volumen de concentrado de pirolusita con una fracción < 1,5 mm.

Objetivo General

Realizar un estudio de molturabilidad del concentrado de pirolusita para determinar la relación de carga y tiempo óptimos para obtener el mayor volumen con una fracción < 1,5 mm mediante el uso del procesamiento de imágenes digitales para su caracterización morfométrica.

Objetivos Específicos

- Aplicar el software ImageJ para la caracterización morfométrica del concentrado de pirolusita evaluando el diámetro del área proyectada y la circularidad.
- Establecer la relación de carga y tiempo óptimos en molino de bolas mediante rodadura para obtener el mayor volumen con una fracción < 1,5 mm.

Tareas

- Se realiza un estudio documental que permita concretar conocimientos sobre los estudios morfométricos y la aplicación de las imágenes digitales en este campo de caracterización de materiales.
- Se estudian generalidades del uso del software ImageJ en la caracterización morfométrica y conceptos generales, ventajas, bondades, etc.
- Diseñar y construir un dispositivo para el cuarteo de minerales pulverulentos, así como su validación experimental y estadística.
- Realizar un muestreo que permita caracterizar morfométricamente al concentrado de pirolusita en estado de entrega.
- Determinar los parámetros de molienda adecuados mediante diseño de experimentos que vinculen las variables de estudio (relación de carga y tiempo) con el peso de la fracción a obtener.
- Realizar un análisis y discusión de los resultados de la caracterización morfométrica del concentrado de pirolusita realizado mediante el procesamiento digital de imágenes.

Aporte

- Por vez primera en el CIS se aplica el procesamiento de la imagen digital en el estudio morfométrico de un mineral pulverulento.
- Se logra realizar un estudio de la variación de los factores de forma de la partícula (circularidad) mediante la molienda por rodadura en molino de bolas, vinculado a temas de desarrollo de materiales compuestos particulados.

CAPÍTULO I. ESTUDIO DOCUMENTAL

1.1. Minerales pulverulentos

A modo de introducción es necesario contestar algunas preguntas generales que definen importantes conceptos, centro de atención de este trabajo:

- 1. ¿Que son los minerales pulverulentos?
 - Son aquellos minerales que se encuentran en estado de polvo.
- 2. ¿Qué es el polvo?

(Existen diferentes definiciones para este término, cuidando nuestra lengua madre es necesario referirse a la definición dada por la Real Academia Española

Polvo¹. (Del lat. *pulvus*, por *pulvis*). m. Parte más menuda y deshecha de la tierra muy seca, que con cualquier movimiento se levanta en el aire. $\parallel 2$. Residuo que queda de otras cosas sólidas, moliéndolas hasta reducirlas a partes muy menudas. $\parallel 3$. Porción de cualquier cosa menuda o reducida a polvo, que se puede tomar de una vez con las yemas de los dedos pulgar e índice. $\parallel 4$. En el lenguaje de la droga, heroína. $\parallel 5$. Partículas de sólidos que flotan en el aire y se posan sobre los objetos. $\parallel ...$

Por lo que se puede concluir que los minerales pulverulentos conforman toda una gama en las aplicaciones industriales como materias primas en diversos procesos que van desde reacciones químicas, producción de aleaciones, hormigones, cerámicas, etc.

1.1.1. Técnicas de muestreo (Muestra y muestreo)

Una muestra es un ensayo o experimento realizado con algo para saber cómo resultará en su forma definitiva.

El muestreo preciso es de extrema importancia y es un requerimiento básico para un análisis de tamaño confiable, cuando se desea estudiar uno o varios parámetros que caracterizan a una población determinada. Se debe tener mucho cuidado para obtener muestras que sean lo más representativas posible, de la cantidad total que se estudia (lote bruto).

¹Diccionario de la Real Academia Española® © 1993-2012. Reservados todos los derechos.

Una de las causas principales de inconsistencias, en los resultados experimentales, es el muestreo impropio que no represente adecuadamente al lote bruto del material. Por consiguiente, una vez que el método de muestreo sea establecido y corroborado, el mismo método siempre debe ser seguido y se evitan errores innecesarios.

En los minerales pulverulentos realizar un muestreo que represente las características, ya sea morfológicas, químicas, fásicas, etc., del total que se analiza, tiene una especial importancia, pues tiene que ser obligatoriamente representativa del total a caracterizar.

1.1.1.1. Procedimiento para tomar muestras

En la literatura se reportan varios métodos para tomar muestras y no es práctico usar un solo método de muestreo, debido al tipo del material (sus características granulométricas) y la forma en la cual está envasado o almacenado [10, 13, 18-22]. Esto afecta la selección del método a ser usado. Por ejemplo los tamaños de partícula (granulometría) de un material puede estar muy fino, medio o grueso y puede tener diferentes granulometrías (mezcla de tamaños), por otra parte pueden estar acomodados en una pila, en vagones ferroviarios, en bolsas, o en un flujo continuo de material.

La ASTM² ha publicado normas para el muestreo de materiales particulados y que pueden ser utilizados como métodos para una recolección adecuada de los materiales de estudio [23-28].

El tamaño de una muestra bruta, no dependerá sólo del carácter del material y de la forma en la cual está disponible, sino que también, en si la prueba debe ser capaz de representar la distribución de tamaño de las partículas de una producción, de una pila, de un montón, de días, o el intervalo breve de tiempo para el control de la producción.

El alcance en el tamaño de una muestra bruta es muy amplio. Puede ser tan grande como varios kilogramos (miles) o tan pequeñas como una fracción de gramo.

² American Society for Testing Materials

1.1.1.2. Muestreo en una rampa o de una cinta transportadora

Cuando el material fluye de una rampa de caída o de un transportador de banda se pueden tomar muestras con una buena exactitud. El lugar ideal para tomar la muestra es justo donde las partículas del material caen de la rampa o la cinta transportadora. Al tomar la muestra, si la corriente es bastante pequeña, se debe usar un cubo u otro receptáculo adecuado, que pueda ser metido completamente a través de la corriente afluente en un intervalo breve de tiempo y con un movimiento uniforme.

De ninguna manera el receptáculo de muestreo debería permitir derrames, porque el derrame tendería a desechar una proporción alta de las partículas más grandes dejando de ser una muestra representativa.

Existen procesos con dispositivos mecánicos de muestreo que permiten seleccionar muestras automáticamente de una corriente en uniformes intervalos espaciados de tiempo.

1.1.1.3. Muestreo en una pila

Cuando se toma muestras de una pila, es sumamente difícil asegurar muestras realmente representativas cuando el material es piedra molida o carbón en forma de partículas grandes. En el crecimiento de una pila cónica, la proporción de partículas finas en la punta será mayor, mientras que en la base, el porcentaje de partículas gruesas será mucho mayor. Por consiguiente, en ningún lugar será descriptivo del todo.

En un proceso de muestreo con pala, cada quinta o décima paleada, debería estar tomada dependiendo de la cantidad de la muestra deseada. La muestra debería consistir en cantidades pequeñas tomadas al azar de tantas partes de la pila como sea accesible y tomadas en cierto modo que la mezcla tenga el mismo rango que la cantidad total.

1.1.1.4. Muestreo de materiales en un carro de carga

Es frecuente el transporte de materiales gruesos, en vagones ferroviarios, como roca triturada y concentrados minerales. Un método recomendado es cavar tres o más trincheras de 30 hasta 38 cm de profundidad y de 30 hasta 38 cm de ancho en el fondo. Las porciones iguales están

tomadas en siete puntos separados por igual, a lo largo del fondo de la trinchera empujando una pala hacia abajo en el material y sin raspar horizontalmente. Para tomar muestras en camiones o barcaza, debe ser realizado con el mismo procedimiento de los vagones ferroviarios, excepto que el número de trincheras deberían ser ajustadas al tamaño del transporte de la unidad y el tonelaje concerniente [27].

Un método establecido para muestrear una carga en un carro cargado con material fino, es tomar ocho muestras del fondo con una excavación cónica de 30 hasta 48 cm con peso aproximado de 700 a 1000 g. Las muestras deben ser espaciadas para representar la longitud y ancho del recipiente y entonces debe combinarse en una sola muestra bruta [27].

Una alternativa y un método más simple de muestrear la carga de un carro, u otra cantidad de material granular es por el uso de un tubo de muestreo. Con este propósito el tubo debe tener 31,75 mm de diámetro y 1,83 m de longitud. Cinco o seis inserciones del tubo (siguiendo el método propuesto por el fabricante del dispositivo) producirán aproximadamente una muestra representativa de 4536 g (10 lb) [27].

Si el material esta empacado en bolsas se debe seleccionar al azar, un número de bolsas igual a la raíz cúbica del número total de bolsas en el transporte y tomar porciones adecuadas (de 800 a 1000 g para materiales de menos de 6 mm) de cada uno de las bolsas seleccionadas para una muestra bruta combinada.

1.1.2. Reducción de la muestra para el análisis de tamizado

Después que la muestra bruta ha sido correctamente tomada, el siguiente paso es reducirla a un tamaño adecuado para los análisis experimentales (tamizado, análisis químico, DRX. etc.) sin afectar de ninguna forma la representatividad de la muestra original (ejemplo: distribución característica del tamaño de las partículas).

En esta fase de la operación, se deben seguir los estándares aplicables de la ASTM y deben ser realizados con tanta mesura como en la colección de la muestra bruta y hacer el tamizado experimental u otra técnica analítica [12, 29-31].

1.1.2.1. Apilando y cuarteando

Una de las formas más sencillas y utilizadas para disminuir el tamaño de la muestra bruta, es el apilado y cuarteado [27]. Para ello se debe apilar la muestra bruta en forma de cono sobre una superficie limpia, seca y suave. Colocar cada pala llena en la cima del cono para permitir que las partículas se deslicen equivalentemente en todas las direcciones. Entonces se debe expandir la muestra en un círculo y pasar alrededor de la pila, gradualmente ensanchando el círculo con una pala hasta que el material esté difundido para un espesor uniforme. Marcar el plano de la pila en cuartos, y desechar dos cuartos opuestos. Colectar y mezclar otra vez en una pila cónica, tomando los dos cuartos alternativos que quedaron en la superficie.

Figura 1.1. Apilado y cuarteado de una muestra.

Es importante para evitar exceso de trabajo en este método, limitar la cantidad de finos generados por la acción de la pala. Continuar el proceso de apilamiento, aplanando, y desechando dos cuartos hasta que la muestra se reduzca al tamaño deseado.

Aunque las características de este proceso permiten una fácil aplicación, se considera que se pueden obtener muestras que no representan adecuadamente la distribución granulométrica de la pila original.

1.1.2.2. Fraccionadores de muestra y reductores

Si las muestras no son demasiado grandes, pueden reducirse a tamaño experimentales mediante uno o más pases por un fraccionador de muestra u hojeador de tipo Jones, el cuál dividirá una muestra en la mitad, al mantener la distribución de tamaño de partícula de la muestra original [27, 32, 33]. La muestra puede ser dividida por pases repetidos en cuartos, octavos, y así sucesivamente, hasta que el tamaño de la muestra deseada, sea obtenido. Para muestras brutas más grandes, los reductores de muestra están disponibles para seleccionar una 16 parte representativa (1/16) con un solo pase (ver Figura 1.2 y 1.3).

Figura 1.2. Reductor de muestra de dieciséis a uno.

Según investigadores que desarrollan el muestreo de diferentes materiales es de gran importancia obtener una parte verdaderamente representativa [13, 20, 22], lo cual no siempre se logra, al no utilizar herramientas que conlleven a un resultado óptimo.

Se recomienda que siempre se debe asegurar pasar por el fraccionador o reductor por lo menos tres veces el tamaño de la partícula más grande de la muestra. No usar exactamente la cantidad de material especificado para la prueba. Si se desea una muestra de 50 g, es necesario obtener una cantidad tan cercana como sea posible, porque no hará diferencia en el porcentaje experimental resultante si la muestra es ligeramente más grande o más pequeña. Tratando arribar a un peso exacto, la tendencia es adicionar o sustraer material lo cual no es representativo del todo afectando la calidad de la muestra.

Figura 1.3. Fraccionadores de muestra de ocho (a) y dieciséis divisiones (b).

La precisión más alta en la reducción de muestra y el tamizado es obtenida a través del uso de un hojeador de hilandería o el fraccionador. En un solo pase pueden ser producidas de 2 a 30 muestras experimentales. No obstante a que la ASTM y los Comités de la ISO ³ siguen investigando y continúan el desarrollo de una declaración de precisión relativa entre los diferentes métodos de fraccionamiento [27, 32], este método presenta ventajas en cuanto a precisión y uniformidad durante la reducción del tamaño de muestra respecto al cuarteo manual.

1.1.3. Muestra experimental

1.1.3.1. Tamaño

En la literatura consultada no se reporta un tamaño de la muestra experimental, para el análisis de tamizado [27, 32-34], pero puede ser determinado por las siguientes sugerencias:

 Si se va a decidir por el tamaño de una muestra experimental, la consideración debe estar dirigida hacia el carácter del material, su fraccionamiento, y el rango de tamaño de partícula que presenta.

³ International Standard Organization

- El tamaño de la muestra está directamente relacionado con la sensibilidad del dispositivo (el tamizador) usado para caracterizar la cantidad más pequeña de material reunido. Por ejemplo, en la ejecución de un análisis de tamizado en un material de partículas finas (en flujo), un tamaño de muestra desde 500 a 1000 g puede ser satisfactorio, mientras que el producto de un triturador, que contiene un rango mayor de agregados una muestra de 20 kg o más puede ser necesario. Para un producto finamente molido, una muestra del 25 a 100 g puede ser suficiente.

1.1.3.2. Límites del peso

El peso por el volumen cúbico del material tiene mucha importancia para determinar el peso o el tamaño adecuado de la muestra experimental. Por ejemplo, una muestra de 100 cm³ de hierro en polvo pesaría aproximadamente 390 g, mientras el mismo volumen de tierra fósil pesaría sólo 50 g.

El volumen de la muestra experimental debe ser tal, que ningún tamizador sea sobrecargado al punto que exista una saturación de partículas en la malla grande y cercanas en la superficie del tamizador. La sobrecarga tiene más probabilidad de ocurrir en los experimentos de materiales que tienen una concentración de partículas cerca de un tamaño, o donde la muestra entera está dentro de un grado estrecho de tamaño.

Por ejemplo, una gran proporción de tamaños de la partícula estaría entre un tamizado de 2 mm y uno de 500 µm. En tales casos, el tamaño de la muestra debe ser lo suficientemente grande para permitir una cantidad medible del material para ser retenido en cada tamiz, Particularmente en los tamizadores de control. Para hacer un análisis de tamizado de material mediano o fino, es mejor no utilizar una muestra muy grande.

Por lo que se puede inferir que una muestra más pequeña, tomada correcta y reducida de forma cuidadosa, debe dar resultados más precisos y coherentes que una muestra más grande que podría sobrecargar uno o más de los tamices. Lo contrario puede ser cierto al muestrear materiales gruesos.

1.1.3.3. Determinación del tamaño de la muestra experimental

Para obtener el tamaño correcto de una muestra, se sugiere como método de chequeo, el siguiente procedimiento: con un fraccionador de muestra, las muestras fraccionadas con precisión deben variar los pesos, como 25, 50, 100, y 200 g. Entonces se debe echar estas muestras en los tamizadores seleccionados, por un período de aproximadamente 5 min, preferentemente en un tamizador mecánico. Una comparación de estos resultados mostrará la muestra de tamaño más adecuada a usar. Por ejemplo, si con la muestra experimental con los 100 g se obtiene aproximadamente el mismo porcentaje pasando por el tamizador más fino la muestra de 50 g, considerando que la muestra de 150 g da un porcentaje más bajo a través del tamizador más fino, esto indica que una muestra de 150 g es también muy grande, pero una muestra de 100 g es satisfactoria.

Una vez que el tamaño de la muestra es determinado correctamente por un experimento en particular, este mismo tamaño de muestra sirve para todos los experimentos.

El tamaño de la muestra pueden ser determinado multiplicando los valores de volumen recomendado por la densidad (en g/cm³) del material a experimentar, con una tolerancia de \pm 25 % [27]. Si la densidad real del volumen del material de experimentación no ha sido determinada, el factor típico de densidad para el material puede ser usado.

1.1.4. Caracterización de las partículas

El tamaño de la partícula es uno de los más importantes parámetros en la ciencia de los materiales, así como en otras ramas de la tecnología. La granulometría, de "gránulo" (pequeño grano), trata de los métodos de medición del tamaño de un grano y por extensión de una población de granos. Se entiende por "grano" en sentido general a un trozo de materia sólida o líquida, esférica o no, que se encuentre en un fluido inmiscible.

Un "grano" puede ser no solamente un grano de arena o de polvo, sino también una gota en una emulsión o un aerosol, una partícula sólida de ceniza en un humo, una burbuja de gas en una espuma, etc. Se entiende por tamaño, una dimensión característica del grano, en general una longitud.

Si se trata de un grano esférico, se tomará evidentemente como dimensión de su tamaño su radio o su diámetro. Para una partícula fuertemente irregular, es a veces difícil definir un tamaño equivalente que sea satisfactorio desde el punto de vista físico.

1.1.4.1. Tamaño de partícula

1.1.4.1.1. Diámetros estadísticos

En la Figura 1.4 se muestra una partícula irregular. Para esta partícula, existe un número infinito de diámetros estadísticos que radian del centro de gravedad de la partícula. El promedio despliega que el diámetro del contorno proyectado es el promedio integrado definido por

$$\bar{d}_R = \int_0^{2\pi} r \cdot \frac{d\theta}{\pi} \tag{1.1}$$

Este cálculo es tedioso de realizar para cada partícula debido a la distribución presente. El reciente uso de la computación ayudó el análisis de la imagen de la morfología de la partícula.

Figura 1.4. Diferentes diámetros de una partícula: (a) definición de radio desplegado R; (b) curva desplegada.

Las técnicas más rápidas simplemente miden una dimensión lineal paralelo a alguna dirección fija y asume que las partículas se orientan al azar para que estas dimensiones promedien cuando una población suficientemente grande se ha clasificado según su tamaño.

Es común el uso de varias dimensiones lineales. El diámetro de Feret es el valor medio de la distancia entre los pares de paralelo de las tangentes al contorno proyectado [10, 21]. El diámetro de Martin es la longitud del cordón medio del contorno proyectado de la partícula. Además el máximo y mínimo intercepto horizontal también se usa como las dimensiones lineales.

Todas estas dimensiones lineales se muestran en la Figura 1.5. Otra medida normalmente usada del diámetro de una partícula es el diámetro del área proyectado que es el diámetro de un círculo que tiene la misma área puesto que está proyectado por la partícula.

Figura 1.5. Diámetros de la partícula diferentes.

Un tamaño normalmente usado de propiedad dependiente es el diámetro esférico equivalente [26]. El diámetro esférico equivalente es el diámetro de una esfera con el mismo volumen que la partícula. Para un cubo esta esfera tendría un diámetro 1,24 veces la longitud del borde del cubo. Otro diámetro esférico equivalente común es el diámetro de Stokes [27].

El diámetro de Stokes es el diámetro de una esfera que tiene el mismo establecimiento terminal de velocidad que una partícula irregular. (nota: el establecimiento tiene que estar bajo flujo laminar (número de Reynolds menor de 0,2) en ambos casos la densidad de la partícula y la esfera se asumen que es el mismo).

El diámetro del tamizador es la longitud de un lado de la abertura cuadrada mínima a través de la cual pasará la partícula. Una partícula irregularmente formada sólo atravesará la posible malla más pequeña si se presenta en la orientación óptima.

Los tiempos de tamizado para las partículas largas se acercan a la infinidad porque sólo dos orientaciones permitirá a la partícula pasar el tamizador más pequeño. Con tiempos largos de tamizado se pueden causar problemas como alguna cantidad de rotura de la partícula que

resultarán inevitablemente durante este tiempo. Una solución común a este dilema es tamizar para un periodo específico de tiempo con todas las muestras del mismo tipo y contar con el error y las roturas que resultan.

Para las distribuciones de partículas de forma irregular, la medición de la distribución del tamaño es dependiente del método de medición. Por esta razón, el método de medición empleado debe reproducir la propiedad de interés (por ejemplo, para los pigmentos, el diámetro del área proyectado es de interés; para los substratos del catalizador, la superficie al diámetro de volumen es de interés, etc.). Hay muchos métodos diferentes de medir la distribución del tamaño. Estos métodos de medición deben ser acoplados con algún tipo de contador o balanza para determinar el número de partículas contadas.

Con el tamizado, el peso de partículas en un rango del tamaño es medido. Con la sedimentación, la densidad óptica de la suspensión de partículas en el rango del tamaño es medida o el porciento másico en el rango de tamaño es medido por la absorción de Rx^4 .

Todas las otras técnicas de clasificar según tamaño no tienen mediciones separadas del peso, tamaño o número y tamaño de partículas en un rango de tamaño particular. Con la dispersión de luz, la densidad y el tamaño de distribución están mejor ajustados los parámetros para una serie de dispersiones de dimensiones de intensidad de luz a diferentes ángulos. Con la adsorción de gas y permeabilidad de gas, es determinada la media de superficie al diámetro de volumen de las partículas

1.1.4.1.2. Tamaño medio de partícula

La medición del tamaño medio de partículas por estos métodos es diferente y depende del método utilizado. La definición matemática [35, 36] de varios tamaños medios, con sus definiciones matemáticas son:

Números, longitud diámetro medio o diámetro aritmético:

$$d_{NL} = d_{av} = \frac{\sum N_i \cdot d_i}{\sum N_i}$$
(1.2)

El diámetro medio geométrico por el número:

⁴ Referido a Rayos-x

$$d_{gN} = a \log_{10} \left(\frac{\sum N_i \cdot \log_{10} \cdot d_i}{\sum N_i} \right)$$
(1.3)

Número, diámetro de superficie medio:

$$d_{NS} = \left(\frac{\sum N_i \cdot d_i^2}{\sum N_i}\right)^{\frac{1}{2}}$$
(1.4)

Número, diámetro medio del volumen:

$$d_{NV} = \left(\frac{\sum N_i \cdot d_i^3}{\sum N_i}\right)^{\frac{1}{3}}$$
(1.5)

Longitud, diámetro medio de la superficie:

$$d_{SL} = \frac{\sum N_i \cdot d_i^2}{\sum N_i \cdot d_i} \tag{1.6}$$

Longitud, diámetro del volumen medio:

1

$$d_{VL} = \left(\frac{\sum N_i \cdot d_i^{\ 3}}{\sum N_i \cdot d_i}\right)^{\frac{1}{2}} \tag{1.7}$$

Superficie, diámetro del volumen medio:

$$d_{VS} = \frac{\sum N_i \cdot d_i^3}{\sum N_i \cdot d_i^2} \tag{1.8}$$

Volumen, diámetro de momento medio y peso (o masa), diámetro de momento medio:

$$d_{V} = d_{W} = d_{M} = \frac{\sum N_{i} \cdot d_{i}^{4}}{\sum N_{i} \cdot d_{i}^{3}}$$
(1.9)

1.1.4.1.3. Precisión de distribución de tamaño

En las técnicas de medición de tamaño que cuentan las partículas, es necesario conocer la exactitud de la distribución del tamaño después de contar un número dado de partículas. La Figura 1.6 da el número de partículas a ser contado para dar una exactitud específica.

Figura 1.6. Error esperado en la distribución de tamaño basado en el número de partículas contadas en el rango de tamaño y porciento de peso en el intervalo de tamaño.

Para errores menores a 1 % en un rango de tamaño dado, donde aparece el 20 % de la masa aparecen, más de 400 partículas deben ser medidas.

Para errores menores a 0,1 % en un rango de tamaño dado, donde aparece el 20 % de la masa aparecen, más de 40000 partículas deben ser medidas.

Este error de medición de tamaño debe mantenerse por debajo del error de muestreo para que el error total no sea dominado por el error del análisis.

1.1.4.2. Morfología de la partícula

El tamaño de una partícula cúbica se define singularmente por su longitud de borde. El tamaño de una partícula esférica se define singularmente por su diámetro. Otras formas regulares tienen las dimensiones igualmente apropiadas. Con algunas partículas regulares con más de una dimensión, es necesario especificar la geometría de la partícula como, por ejemplo, un cilindro que tiene un diámetro y una longitud. Con las partículas irregularmente formadas, se exigen muchas dimensiones hasta especificar la forma de la partícula completamente.

Como se muestra en la Figura 1.4, una sola partícula puede tener un número infinito de los diámetros estadísticos, de estos diámetros sólo son significativos cuando un número suficiente de partículas se ha medido para dar los diámetros estadísticos promedio en cada rango de

tamaño. La relación numérica entre los diferentes diámetros de una sola partícula depende de la forma de la partícula.

1.1.4.2.1. Factores de forma

La combinación de las dimensiones de diferentes diámetros promedio de una distribución de partículas, se llama factor de forma. Los factores de la forma tienen tres funciones:

- Los factores de proporcionalidad entre los diferentes métodos de determinación de tamaño (por ejemplo, la determinación de tamaño promedio por el área de la superficie es proporcional al tamaño promedio determinado por el volumen y la constante de proporcionalidad es un factor de la forma).
- Los factores de conversión para expresar los resultados a lo que se refiere a una "esfera equivalente."
- 3. Las transformaciones del cuadrado y cubo del diámetro de la partícula medidos en el área de superficie de partícula y volumen de la partícula, respectivamente. Pueden aplicarse los factores de forma a una partícula individual o a una distribución de partículas. Ellos no son sensibles a la distribución del tamaño. Para una distribución de partículas, el factor de forma medido es un valor promedio. Los factores de forma siempre se entienden relativos a dos métodos de determinación de tamaño de partícula.
- El factor de forma de volumen α_v es definido como

$$\alpha_{\rm v} = \frac{V_{\rm t}}{\sum N_{\rm i} \cdot d_{\rm i}^3} = \frac{\frac{V_{\rm t}}{N_{\rm t}}}{\frac{\sum N_{\rm i} \cdot d_{\rm i}^3}{N_{\rm t}}}$$
(1.10)

- Donde: V_t es el volumen total de la muestra, N_t es el número total de partículas en la muestra, N_i es el número de partículas con un diámetro d_i. Para una población de esferas $a_v es \pi/6$ o 0,52, considerando que para una población de cubos $a_v es 1,0$. Para todas las otras formas, valores mayor que 0,52 se observan cuando el eje mayor de la partícula se usa para el d_i.
- El factor de forma de superficie, α_{s} , es definida por

$$\alpha_s = \frac{S_t}{\sum N_i \cdot d_i^2} = \frac{\frac{S_t}{N_t}}{\frac{\sum N_i \cdot d_i^2}{N_t}}$$
(1.11)

Donde: S_t es el área superficial total de la muestra. Para una población de esferas α_s es π y para una población de cubos α_s es 0,6.

Otro parámetro de forma útil es el radio de α_s a α_v :

$$\frac{\alpha_{\rm s}}{\alpha_{\rm v}} = \frac{\frac{S_{\rm t}}{\sum N_{\rm i} \cdot d_{\rm i}^2}}{\frac{V_{\rm t}}{\sum N_{\rm i} \cdot d_{\rm i}^3}} \tag{1.12}$$

Este radio es obtenido fácilmente de los datos experimentales de adsorción del gas para el área superficial por unidad de volumen, $S_v = S_t/V_t$ (qué iguala $6/d_{vs}$ para una esfera dónde el d_{vs} es el volumen para diámetro medio de la superficie definida por la ecuación de d_{vl})

Debido a que las esferas tienen una área de la superficie mínima por unidad de volumen, todo los valores de α_s/α_v serán más grandes que 6 cuando el eje mayor se usa para el d_i. Cuando el eje menor se usa para el d_i, los valores de α_s/α_v puedan ser más pequeños y más grandes que 6. Un valor particular del factor de forma no especifica una geometría particular porque muchas geometrías pueden dar el mismo factor de forma.

El factor de forma dinámico, K, se define como la resistencia de una partícula para división de movimiento por la resistencia de una esfera para moverse cuando la partícula y la "esfera equivalente" tienen el mismo volumen. Cuando la partícula está configurada bajo el flujo laminar, K se da por

$$K = \left(\frac{d_{NV}}{d_{st}}\right)^2$$
(1.13)

Donde: d_{NV} es el diámetro de volumen medio (ecuación de d_{gN}) y d_{st} es el diámetro de Stokes. El factor de forma dinámico, K, es igual al recíproco de la raíz cuadrada de la esfera, Ψ_{ω} , es uno de los factores de la forma más tempranamente usado:

$$K = \psi_{\omega}^{-\frac{1}{2}} \tag{1.14}$$

La esfericidad, Ψ_{ω} , es definida por

 $\psi_{\omega} = rac{\text{Área de la superficie de una esfera que tiene el mismo volumen que la partícula}}{\text{El área de la superficie de la partícula}}$

$$\psi_{\omega} = \left(\frac{d_{NV}}{d_{NS}}\right)^2 \tag{1.15}$$

El volumen para el diámetro medio de la superficie es dado por

$$d_{\nu s} = \frac{d_{NV}^3}{d_{NS}^2} = \psi_\omega \cdot d_{NV} \tag{1.16}$$

El cual está directamente relacionado con la esfericidad.

Bajo un número de Reynolds, el diámetro de arrastre iguala el diámetro de la superficie de partículas convexas. Para este caso, el diámetro de Stokes, definido como el diámetro de caída libre en la región de flujo laminar, se relaciona a la esfericidad como sigue:

$$d_{st} = \left(\frac{d_{NV}^{3}}{d_{NS}}\right)^{\frac{1}{2}} = \psi_{\omega}^{\frac{1}{4}} \cdot d_{NV}$$
(1.17)

Los factores de forma no proporcionan la información específica sobre la geometría de las partículas pero simplemente dan un número para los propósitos de la comparación. Para proporcionar la información de geometría de partícula, un modelo geométrico (es decir, cubo, tetraedro, la esfera, etc.) debe seleccionarse y comparar las partículas de la población a esa geometría para ver como las partículas se corresponden. Este acercamiento, hecho por Heywood [37], sólo puede usarse cuando tres dimensiones mutuamente perpendiculares de la partícula pueden determinarse. Esta cantidad de información en cada partícula no está típicamente disponible, lo que previene el uso común de esta técnica para dar la información detallada de forma de partícula.

1.1.4.2.2. Análisis de forma

La regeneración de la forma puede realizarse por las técnicas de transformación de Fourier. Primero el centro de gravedad de la partícula se encuentra por su contorno. Entonces un sistema de coordenadas polares es fijo. Schwarcz y Shane localizaron el contorno de la partícula y generaron un argumento de R_n contra θ_n , dónde n es el número de ángulos iguales utilizado [38]. Meloy usó una transformación de Fourier para generar los coeficientes de Fourier, A_n , asociado con los ángulos θ_n y encontró que las partículas tienen rúbricas que siguen la ecuación empírica [39, 40].
$$A_{\rm N} = \log n^{-s} \tag{1.18}$$

Una gráfica del log A_N contra el log n da una línea recta con una inclinación de -s que es la forma característica de la partícula. Las generalizaciones de este método a las partículas tridimensionales también son posibles. Pueden analizarse las formas de las partículas y pueden reproducirse usando este método de transformación de Fourier.

1.1.4.2.3. Forma fractal

Cuando la superficie de una partícula no es uniformemente o lisa como la de una esfera, pero tiene una textura como de brócoli o coliflor, se dice que la partícula es fractal. Con la proyección bidimensional de una partícula fractal, encontramos que el perímetro de la partícula aumenta sin límite, a medida que disminuye en la longitud. La circunferencia estimada C, con una regla de tamaño que x es proporcional a

$$C_{x}\alpha x^{1-D} \tag{1.19}$$

Donde: D es la dimensión del fractal de la partícula. Un ejemplo de una partícula del fractal generada en una computadora se muestra en la Figura 1.7.

Para determinar la dimensión del fractal de una partícula, son trazados una serie de círculos con diferentes centros y diferentes radios. Un gráfico del promedio de números de las subunidades de partículas dentro del círculo son trazados contra el radio del círculo en un papel log – log la pendiente es la dimensión fractal D. Formas fractales son producidas tradicionalmente por procesos de aglomeración que ocurren en la precipitación de partículas de sol-gel en plasma, y síntesis láser de polvos cerámicos.

Figura 1.7. Generación por computadora en 2D de un agregado fractal.

Las propiedades de los polvos cerámicos fractales dependen de sus dimensiones del fractal. La densidad, ρ , de una partícula del fractal depende de su radio, R y de la dimensión del fractal:

$$\rho \alpha R^{D-3} \tag{1.20}$$

El área superficial por unidad de masa, A de una partícula fractal depende del radio de las partículas individuales, r_0 del radio del agregado, R y la dimensión fractal:

$$\rho \alpha(\mathbf{r}_0)^{-1} \cdot \mathbf{R}^{\mathrm{D}} \tag{1.21}$$

Las partículas fractales modifican los fenómenos externos en el espacio circundante (por ejemplo, un fractal conductor modifica el campo eléctrico alrededor de él, un fractal absorbente modifica la concentración de las especies esparciéndolas alrededor de él, y un fractal sumergido en un fluido modifica el flujo del fluido alrededor de él).Pueden expresarse las leyes básicas que gobiernan estos procesos externos en términos de la dimensión del fractal D.

Otra propiedad interesante de los fractales es la probabilidad de la intersección entre dos fractales. El número de intersecciones, M_{12} , entre dos partículas del fractal 1 y 2 los dos de tamaño R, es independientemente en la misma región de espacio:

$$M_{12} \alpha R^{D_1 + D_2 - 3} \tag{1.22}$$

Donde: D₁ y D₂ son las dimensiones del fractal de cada partícula, respectivamente. Si el poder de R es negativo, la probabilidad de disminuciones de la intersección como el tamaño del fractal, R aumenta.

Por esta razón, dos fractales con la misma dimensión del fractal tendrán una probabilidad de la intersección baja si $D_1 = D_2 > 1,5$. Como un resultado, los fractales con las dimensiones del fractal mayor que 1,5 actúan como las esferas individuales en solución diluida. En la solución concentrada, fractales con una dimensión del fractal menos de 1,5 pueden ser forzadas fuertemente a interpenetrarse.

1.1.4.3. Densidad del polvo

El peso de un polvo dividido por el volumen que ocupa es su densidad volumétrica. La densidad volumétrica de un polvo es a menudo mucho menor que la densidad de los granos individuales que constituyen el polvo. La verdadera densidad del grano individual es determinada por psicrometría. En la psicrometría una masa dada de polvo se pone en un vaso con un volumen calibrado. Entonces un fluido se usa para llenar el vaso.

El volumen de fluido llena el vaso y el volumen real del polvo son medidos por la diferencia entre el volumen del vaso calibrado en vacío y el volumen real del fluido usado para llenar el vaso que contiene el polvo. Este volumen combinado con el peso de polvo permite calcular la verdadera densidad. Cuando el fluido es un gas, el volumen real del gas usado para llenar el espacio vacío del vaso a una presión dada es directamente medido.

Se usan los gases inertes por esta medida para minimizar la adsorción. Cuando el fluido es un líquido, la masa del líquido agregado se mide y se usa la densidad líquida a una temperatura dada para calcular el volumen del líquido que llena el espacio vacío en el vaso. Debe tenerse cuidado en la selección del líquido porque los líquidos no humectantes, no entrarán en los poros de las partículas de polvo.

1.1.4.4. Técnicas para el análisis granulométrico

1.1.4.4.1. Método estándar para la determinación del tamaño de grano.

Existen varios métodos para la medición del tamaño de grano, los cuales se pueden clasificar de acuerdo con el gráfico siguiente:

Figura 1.8. Métodos de medición del tamaño de grano.

- Procedimiento de comparación: involucra la comparación de la estructura de grano con una serie de imágenes graduadas.
- Procedimiento planimétrico: involucra el conteo del número de granos dentro de un área determinada.

- Procedimiento de intersección: involucra el conteo de los granos interceptados por una línea de ensayo o el número de intersecciones de la línea con los bordes de grano.

Para poder realizar mediciones sobre las imágenes obtenidas en el microscopio es necesario ajustar el tamaño de la imagen en el papel de manera que no se modifique la magnificación obtenida mediante el microscopio. Las imágenes se miden mediante la observación de una reglilla en el microscopio, el tamaño real de las imágenes observadas. A partir de esto puede ajustarse el tamaño de las imágenes para que no se vea modificado el zoom obtenido mediante el microscopio.

Tamaño real de las imágenes observadas bajo el microscopio óptico, utilizando el ocular de 10x y los objetivos de 5X, 10X, 20X, y 40X. (Magnificación total = Mag. Oc. * Mag. Obj.).

Para que las imágenes capturadas respeten la magnificación del microscopio, la circunferencia de las imágenes deberá tener en la hoja un diámetro de 175mm. De esta manera, las distancias medidas sobre el papel estarán relacionadas con las distancias reales sobre la probeta mediante la magnificación M utilizada en el microscopio.

Procedimiento de comparación

En el laboratorio se cuenta con un ocular especial para la medición del tamaño de grano mediante el procedimiento de comparación. En la

Figura 1.9 se observan las distintas plantillas de comparación visualizadas a través de dicho ocular.

El círculo exterior tiene un diámetro de 175 mm, y debe coincidir con el borde de la imagen de la micrografía para respetar las magnificaciones.

El número de cada plantilla corresponde al tamaño de grano "G" si se está observando la probeta con una magnificación de 100X. En caso de utilizar otra magnificación debe corregirse este valor mediante la suma del factor de corrección Q (Tabla 1.1).

Figura 1.9. Reglilla del microscopio

Magnificación	Factor de corrección Q (para Mb=100X)		
М	$Q = 6,64Log_{10}\left(\frac{M}{Mb}\right)$		
50X	-2		
100X	0		
200X	2		
400X	4		

Tabla 1.1. Factores de corrección

Procedimiento planimétrico

La imagen de abajo muestra en el centro un círculo con una superficie de 5000 mm². El círculo exterior tiene un diámetro de 175 mm, y debe coincidir con el borde de la imagen de la micrografía para respetar las magnificaciones. El tamaño de grano "G" se calcula a partir de las tablas 4 y 5 de la Norma ASTM E112 [29] (Anexo I-F, Figuras 1 y 2 respectivamente).

 $N_A = granos por mm^2$ $N_{INTERNO} = número de granos dentro del círculo$ $N_{INTERCEPTADO} = número de granos interceptados por el círculo$

f = múltiplo de Jeffries

 $N_A = f * \left(N_{INTERNO} + \frac{N_{INTERCEPTADO}}{2} \right)$

Para un área de 5000 mm² \rightarrow f = 0,0002 * M²(M = Magnificación)

Procedimiento de intersección

La imagen de abajo muestra las distintas geometrías utilizadas en la medición del tamaño de grano mediante el procedimiento de intersección. Las cuatro líneas rectas de la imagen corresponden al método de Heyn. El método de Hilliard utiliza una circunferencia generalmente de 100, 200 o 250 mm de perímetro. Las tres circunferencias de la imagen corresponden al método de Abrams (entre las tres suman una longitud de 500 mm).

Reglas de conteo:

Una intercepción es un segmento de la línea de ensayo que pasa sobre un grano. Una intersección es un punto donde la línea de ensayo es cortada por un borde de grano. Cualquiera de los dos puede contarse con idénticos resultados en un material monofásico. Cuando se cuentan intercepciones, los segmentos al final de la línea de ensayo que penetran dentro de un grano, son anotados como media intercepción. Cuando se cuentan intersecciones, los puntos extremos de la línea de ensayo no son intersecciones y no son contados excepto cuando tocan exactamente un borde de grano, entonces debe anotarse $\frac{1}{2}$ intersección. Una intersección coincidente con la unión de tres granos debe anotarse como 1 $\frac{1}{2}$.

$$\overline{N}_{L} = \frac{N_{i}}{\frac{L}{M}}$$
 $G = (6,643856 * \log_{10} \overline{N}_{L}) - 3,288$

1.2. Procesamiento digital de imágenes

La principal ventaja de la imagen digital frente a la analógica es su inmediatez. No necesitamos esperar a realizar un complicado proceso de revelado para ver la imagen y en caso de que el resultado no sea de nuestro gusto podemos desecharla y tomar otra sin coste alguno. Además presenta otras muchas ventajas. A una imagen digital se le puede cambiar el contraste, el brillo, el color; se puede combinar con otras imágenes; se puede duplicar, rotar, aumentar o disminuir; puede cuantificarse y puede transmitirse a miles de kilómetros de distancia en pocos segundos.

La cuantificación de objetos presentes en imágenes microscópicas es una tarea a la que investigadores de diversos campos de la ciencia se han de enfrentar habitualmente. Así, el médico o biólogo puede precisar conocer el tamaño y número de células presentes en un determinado tejido, el geólogo es posible que necesite determinar el tamaño de grano y porcentajes de los constituyentes mineralógicos de una roca, al metalógrafo le pueden interesar caracterizar las relaciones espaciales y orientaciones de los componentes de una aleación, etc.

1.2.1. Fundamentos del proceso digital de imágenes

Desde un punto de vista físico, una imagen puede considerarse como un objeto plano cuya intensidad luminosa y color puede variar de un punto a otro. Si se trata de imágenes

monocromas (blanco y negro), se pueden representar como una función continua f(x, y) donde (x, y) son sus coordenadas y el valor de f es proporcional a la intensidad luminosa (nivel de gris) en ese punto.

Para obtener una imagen que pueda ser tratada por el ordenador es preciso someter la función f(x, y) a un proceso de discretización tanto en las coordenadas como en la intensidad a este proceso se le denomina digitalización.

La digitalización consiste en la descomposición de la imagen en una matriz de M x M puntos, donde cada uno tiene un valor proporcional a su nivel de gris. Dado que este valor puede ser cualquiera dentro de un rango continuo, es preciso dividir dicho rango en una serie de k intervalos, de forma que el nivel de gris de cada punto sea asignado a uno de los valores que representa dicho intervalo. La mayoría de los sistemas de digitalización de imágenes suelen ser capaces de discriminar 256 niveles de gris.

Por consiguiente una "imagen digital", es una imagen f(x, y) que ha sido discretizada en sus coordenadas espaciales y en su intensidad luminosa.

Cada elemento en que se divide la imagen recibe el nombre de "píxel" (*picture element*). El número de niveles de gris y las dimensiones de la matriz (número de filas por número de columnas) nos condicionan la capacidad de resolución de la imagen digital. La resolución espacial de la imagen viene dada por el número de píxeles (nº de filas x nº de columnas) que tiene la imagen. Cuanto mayor sea este número mayor va a ser la resolución.

La resolución cromática depende del número de bits que se utilice para almacenar el valor de un píxel. Si utilizamos un bit podemos tener únicamente dos valores (0 y 1) (blanco y negro), si utilizamos 4 bits el número posible de niveles de gris será de 16 (2^4) y si utilizamos 8 bits (1 byte) el número de niveles de gris posibles es de 256 (2^8).

En el caso de imágenes en color la intensidad puede considerarse como un vector tridimensional cuyas componentes son las intensidades en las tres bandas espectrales: rojo, verde y azul. Hablándose en este caso de una imagen multibanda, puesto que la información de la imagen a color se desglosa en tres imágenes correspondientes a cada una de las bandas del espectro visible. A este tipo de imágenes también se las denomina imágenes RGB, iniciales en inglés de las bandas espectrales que la forman (Red, Green, Blue). Para cada una de las bandas se suelen utilizar 8 bits de información, 24 bits en total, lo que nos dan más de 16 millones de posibles

combinaciones de colores. Algunos dispositivos pueden llegar a utilizar hasta 16 bits para cada banda, 48 bits en total (más de 281 trillones de colores).

1.2.2. Dispositivos de captación de imágenes.

La mayoría son dispositivos con sensores CCD (*Charge Couple Device*). Un CCD es un dispositivo similar a un microchip con una serie de elementos fotosensibles (píxeles) de polisilicio. Cada uno de estos elementos es capaz de generar una señal eléctrica proporcional al número de fotones (intensidad luminosa) que ha recibido (Figura 1.10).

Figura 1.10. Esquema de un CCD de superficie (*array*) y de su funcionamiento.

Existen dos tipos de CCD según la disposición de los elementos fotosensibles: lineales y de superficie. En los primeros los píxeles se ordenan de modo lineal. Para obtener una imagen es preciso desplazar el CCD por la superficie de la imagen. Este tipo de CCD es el que se utiliza en los escáneres.

Los CCD de superficie o *array* son los que se utilizan en las cámaras de vídeo o de fotografía digital. Tienen dispuestos los píxeles en forma de matriz y permiten capturar toda la imagen al mismo tiempo.

Los dispositivos CCD capturan imágenes monocromas. Para poder capturar imágenes en color con un CCD es necesario descomponer previamente la luz en los tres colores básicos del espectro: rojo verde y azul y recogerla información de cada uno de estos colores en un píxel. Para conseguir esto se pueden utilizar tres métodos:

- CCD único. Un CCD con píxeles sensibles a diferentes colores (rojo, verde y azul).
- Tres CCD cada uno sensible a uno de los colores.
- CCD único con triple exposición. Se coloca delante del CCD un filtro para cada uno de los colores del espectro y se toman tres imágenes de la misma zona.

Las imágenes de mayor calidad se obtienen con el segundo método. El tercero permite obtener una calidad similar al segundo, pero en objetos estáticos, ya que se necesita el triple de tiempo para obtener la imagen en color.

Los escáneres al contar con un sensor lineal permiten una mayor resolución de imagen, sin embargo el tiempo de digitalización es mucho más lento y en la mayoría de los casos sólo podemos digitalizar imágenes planas (fotografías, transparencias, radiografías, etc.). Los tiempos de digitalización de las cámaras son mucho más rápidos y nos permiten captar cualquier tipo de escenas, aunque la resolución espacial de la imagen sea menor.

Además del tipo de sensor CCD (lineales o de superficie) los dispositivos de captación los podemos dividir en analógicos y digitales. En el primer grupo tenemos las cámaras con sensor CCD que traducen la imagen que capturan en una señal de vídeo (PAL, NTSC o Secam). Esta señal de vídeo será posteriormente digitalizada mediante un *frame grabber* o tarjeta digitalizadora de vídeo. La máxima resolución que podemos obtener con este tipo de cámaras viene limitada por el sistema (PAL 768 x 576 píxeles).

Las cámaras digitales también utilizan CCD para generar la imagen, pero en este caso es la propia cámara la que la digitaliza. Su principal ventaja es que permiten resoluciones mucho mayores. Hoy en día son relativamente habituales para microscopía cámaras de 12 Megapíxeles (4080 x 3072 píxeles). Un problema que se presenta al tomar imágenes de gran resolución es que la transmisión de la imagen al ordenador no es instantánea, siendo necesario unos pocos segundos para su visualización en la pantalla, lo que puede ser un problema cuando trabajamos con imágenes dinámicas.

El criterio más habitual para definir la calidad de una cámara digital es la resolución del sensor, es decir el número de elementos foto sensible que tiene y que nos dan la máxima resolución de la imagen digital obtenida. Sin embargo, para determinadas técnicas microscópicas en las que la señal luminosa que se tiene es muy baja y de tipo monocromático o de un pequeño rango de longitudes de onda, como es el caso de la microscopía de fluorescencia, existen otra serie de factores que hay que tener en cuenta a la hora de adquirir una cámara:

- Sensibilidad espectral o eficiencia cuántica. Mide la efectividad de un sensor para producir electrones a partir de los fotones incidentes. Varía en función de la longitud de onda. La mayoría de los sensores CCD estándar son más sensibles a las longitudes de onda verde y roja (entre 550 y 800 nm) y menos sensibles a azul y ultra violeta (375 550 nm) por lo que para trabajar con fluorescencia en estos rangos es conveniente utilizar cámaras con una mayor eficiencia cuántica para longitudes de onda cortas. Esto se consigue utilizando recubrimientos de fósforo que cuando se excitan en longitudes de onda cortas (ultravioleta o azul) reemiten en longitudes de onda superiores (entre 500 y 580 nm).
- Ruido térmico. Electrones generados en el sensor debido a que se eleva la temperatura en tiempos de exposición prolongados. Se elimina refrigerando la cámara.
- Rango dinámico. Relación entre las zonas de mayor y menor intensidad que se puede detectar con el sensor. A mayor rango dinámico mayor sensibilidad de la cámara para detectar ligeras variaciones de intensidad luminosa.
- Binnig. Consiste en agrupar conjuntos de píxeles como si fuese uno sólo para aumentar la sensibilidad de la cámara. Para intensidades luminosas muy bajas puede ocurrir que la señal que se reciba en un sólo píxel esté por debajo del umbral de detección sin embargo si sumamos las señales recibidas en un conjunto de 4 x 4 píxeles es posible que se supere el umbral de detección y tengamos señal. Algunas cámaras que se utilizan para fluorescencia permiten hacer *binnig* de hasta 8 x 8 píxeles.

1.2.3. Formato de imágenes

A la hora de archivar imágenes el primer factor que se debe de tener en cuenta es el formato. Existen una serie de formatos estándares que pueden ser leídos por la mayoría de los sistemas operativos y programas de tratamiento de imágenes permitiendo compartir imágenes entre personas que utilizan diferentes equipos. Los ficheros de imágenes digitales pueden tener un tamaño considerable. Una sesión de microscopio en la que se tomen 30 campos con una resolución de imagen de 1024 x 1024 a 8 bits por píxel, nos ocuparía 30 MB (Megabytes) de disco duro. Si las 30 imágenes anteriores se capturasen en color (24 bits por píxel) ocuparía 90 MB. Con estos tamaños de imagen en unas pocas sesiones se habrá acabado la capacidad de un disco de varios Gigabytes. El tamaño de las imágenes también es un problema a la hora de transferirlas. Cada vez se utiliza más la red Internet como medio para enviar imágenes entre ordenadores distantes. Las velocidades de transmisión de la red nos condicionan el tamaño de nuestras imágenes. Si estas velocidades no son muy altas deberemos utilizar formatos comprimidos.

Los formatos de imágenes más usuales son:

- TIFF. Es probablemente el formato de imagen más universal. Soporta imágenes de hasta 48 bits por píxel, pudiendo ser comprimidas o no comprimidas. El formato comprimido utiliza algoritmos de compresión sin pérdida de información con relación al fichero original.
- PCX. Es un formato del sistema operativo DOS. Soporta hasta imágenes de 24 bits y no está comprimido.
- BMP. Es el formato de imágenes de Microsoft. Usado frecuentemente en programas de Windows. Soporta imágenes de 24 bits sin comprimir, por lo que su tamaño suele ser grande.
- PICT. Considerado el formato estándar de imágenes para Macintosh. Soporta imágenes de 24 bits por píxel.
- JPG. Es el formato comprimido más popular, compatible con gran número de plataformas. Los datos son comprimidos para eliminar información no detectable por el ojo humano. La eficiencia de la compresión es excelente pudiendo llegar a 1/20 o 1/30 del original, lo que hace que sea un formato muy aconsejable para cuando se desea almacenar un gran número de imágenes en un espacio de disco limitado, o cuando deseamos transmitir esas imágenes. Soporta imágenes en color real de 24 bits por píxel. Es el formato más utilizado para imágenes en Internet.
- GIF. Es un formato comprimido muy utilizado para guardar iconos, gráficos e imágenes con pocos colores o en niveles de gris. Únicamente soporta imágenes de 8 bits por píxel (256 colores).

 PNG. Es un nuevo formato de imagen diseñado para Internet y pensado como el sucesor, en código abierto y libre, del formato GIF. Soporta imágenes de hasta 24 bits por píxel y utiliza un algoritmo de compresión sin pérdida de información, sin embargo sus tasas de compresión son menores que las de los formatos GIF y JPG.

Cuando trabajamos con imágenes microscópicas es conveniente almacenar, además de la propia imagen digital, información relevante de la misma, por ejemplo: resolución del píxel, dimensiones, objetivo utilizado, etc. Esta información puede venir en una cabecera del propio fichero de la imagen (como ocurre en algunos formatos especiales de equipos de microscopía), en un fichero de información separado del fichero de imagen, o debe tomarla y almacenarla el propio usuario.

Si la información que queremos asociar a la imagen es más amplia que la descrita anteriormente, lo más aconsejable es utilizar un sistema de base de datos que permita incorporar y visualizar imágenes. Con estos sistemas podemos tener perfectamente organizadas las imágenes y un gran número de información relevante de las mismas, desde las condiciones de preparación de la muestra, a datos de adquisición, fecha de procesado, datos del operador y cualquier otro dato de la muestra. La ventaja principal de la base de datos es que nos permite ordenar y hacer búsquedas personalizadas de imágenes en función de cada uno de los campos que tengamos definidos. Así podemos buscar todas las imágenes de un mismo espécimen, tratadas con un mismo marcaje, procesadas por un mismo operador, etc.

1.2.4. Proceso de imágenes

Dentro de lo que se denomina proceso de imágenes se engloban una serie de técnicas que comprenden operaciones cuyo origen es una imagen y cuyo resultado final es otra imagen. El valor del píxel en la imagen de salida puede ser función del valor que tenía en la imagen de entrada, de los valores de sus vecinos o del valor de todos los puntos de la imagen de entrada.

Según González y Wintz [41], el objetivo de estas técnicas es procesar una imagen de tal modo que la resultante sea más adecuada que la imagen original para una aplicación específica. El término "específico" es importante porque establece que el valor de la imagen resultante esté en función del problema que se trata. Así, un método que es útil para realzar un determinado tipo de imágenes puede no serlo para otras.

1.2.4.1. Paletas de colores

Las paletas de colores o VLT (*Video Look-up Table*) son tablas que los programas de tratamiento de imágenes utilizan para modificar el aspecto de una imagen digital sin modificar los valores de sus píxeles. Una imagen en niveles de gris se puede visualizar en falso color utilizando una paleta de colores en la que los valores de los píxeles se traduzcan por diversos colores en vez de por niveles de gris (Figura 1.11).

Figura 1.11. Imagen visualizada con una paleta de niveles de gris y la misma imagen visualizada en falso color utilizando una paleta de colores.

El ojo humano únicamente puede distinguir unos pocos niveles de gris sin embargo es muy sensible a las variaciones de color, por tanto pequeñas variaciones en intensidades luminosas que no son apreciables si se visualiza una imagen en niveles de gris, se pueden apreciar claramente utilizando una paleta de color adecuada.

1.2.4.2. Operaciones puntuales

Se definen como aquellas en las que el valor de un píxel en la imagen de salida depende del valor de ese mismo píxel en la original. Dentro de éstas se tiene, las denominadas transformaciones de histograma como son: la normalización, la linearización y el escalado.

El histograma de niveles de gris de una imagen representa una distribución de los valores de los píxeles (niveles de gris) que forman la imagen. Normalmente en el eje de las X se representan los valores de gris (entre 0 y 255) y en el eje de las Y el número de píxeles que hay para un valor determinado. Imágenes poco contrastadas, cuyo rango de niveles de gris es escaso, se pueden mejorar realizando una expansión de su histograma de niveles de gris. La normalización consiste

en expandir el histograma para que ocupe todo el rango posible de valores. Así en la Figura 1.12 se observa una imagen cuyo histograma ocupa un rango de gris entre 30 y 70, al expandir el histograma entre 0 y 255 la imagen resultante aparece mucho más contrastada.

Figura 1.12. Imagen poco contrastada e imagen resultante de la expansión de su histograma.

Una descripción detallada de otro tipo de operaciones de histograma es reportada por Pertusa [42]. Otro tipo de operaciones lineales son los ajustes de contraste, brillo y ganancia en los que variando la curva de ajuste se puede modificar a voluntad cualquiera de estos parámetros. (Figura 1.13).

Figura 1.13. Aumento de la ganancia de una imagen manipulando la curva de ajuste.

Operaciones puntuales son también las operaciones aritméticas: suma, resta, multiplicación y división así como las combinaciones de varias imágenes para obtener como resultante su máximo, mínimo, media, etc.

1.2.4.3. Operaciones locales

En este tipo de operaciones el valor del píxel en la imagen de salida es función del de sus vecinos más próximos y del suyo propio en la imagen original. Se suelen presentar como operaciones o convoluciones de matrices alrededor del píxel tratado.

La forma de aplicar estos filtros es como sigue:

- Se define un elemento estructural que define una pequeña área de la imagen, por ejemplo una matriz de 3 x 3 píxeles.
- Se opera con los valores de la matriz y se asigna al píxel central, en la imagen de salida, el resultado de la operación definida. La operación puede ser obtener el valor de la mediana, la media, el máximo, el mínimo, etc.

El objetivo de estos procesos es modificar las imágenes para mejorar su calidad o resaltar aspectos de las mismas que nos interesan. El resultado de los filtros viene condicionado por el elemento estructural que se utilice y el número de iteraciones (repeticiones) que realiza el filtro. Los elementos estructurales circulares o próximos a la forma circular son los que mejor mantienen la forma de los objetos presentes en la imagen.

En función del resultado obtenido se puede hablar de filtros de suavizamiento que disminuyen las diferencias entre píxeles vecinos produciendo un difuminado de las líneas de contorno de los objetos y una especie de desenfoque general de la imagen. De este tipo es el denominado filtro de promedio que se basa en calcular el valor de la media de los píxeles que forman el elemento estructural (por ejemplo una ventana de 9 x 9) y asignarlo al píxel central en la imagen de salida. Este filtro resulta muy útil para eliminar ruido de fondo en imágenes de fluorescencia o confocal.

Cuando lo que interesa es enfatizar las zonas en que existen diferencias acusadas de niveles de gris debemos utilizar otro tipo de filtros denominado de realce o enfatizado. Se basan en definir

una matriz en la que el píxel central es positivo, mientras que sus vecinos son negativos o cero y la suma de los valores de la matriz de filtrado es la unidad.

Un tipo especial de filtros de realce son los denominados Laplacianos o de extracción de contornos. La matriz utilizada para estos filtros es muy similar a la anterior únicamente varía en que el resultado de la suma de sus valores es igual a cero.

La mayoría de las veces para obtener el resultado deseado es preciso combinar diferentes tipos de filtros junto con otros tipos de operaciones de imágenes como operaciones aritméticas, manipulación de histogramas, etc. Alguna de estas combinaciones da lugar a nuevos tipos de filtros como los denominados *tophat* que consisten en combinar filtros de máximo y mínimo y a la imagen resultante sustraerle la imagen original o de la imagen original sustraer la resultante. Este tipo de filtros son de gran utilidad para uniformizar el fondo de las imágenes y resaltar objetos de interés. En la literatura se reportan además descripciones detalladas de las operaciones de imágenes y sobre procesamiento de imágenes [42-46].

1.2.5. Segmentación de imágenes

La segmentación o detección de objetos es el proceso por el cual los píxeles pertenecientes a una imagen son divididos en clases, normalmente dos: objetos de interés y fondo. El fin último de la segmentación es el reconocimiento de objetos y en muchos casos su cuantificación. Objetos de interés pueden ser los núcleos en una imagen histológica de un tejido, microorganismos en una muestra de plancton, las hojas de una planta, etc.

Un método sencillo de segmentación es el denominado *thresholping*. Se utiliza para convertir una imagen de niveles de gris en una imagen binaria. Cada píxel es clasificado como *ON* (blanco, valor 255) u *OFF* (negro, valor 0) dependiendo de si su nivel de gris excede o no un valor umbral. La selección del umbral se realiza a partir de un estudio del histograma de niveles de gris de la imagen. Si se tiene una preparación con unos núcleos que presentan un valor de gris claro sobre un fondo oscuro y se visualiza el histograma de distribución de niveles de gris de dicha imagen se observa como dicho histograma es claramente bimodal con dos picos bien diferenciados, el primero corresponde al fondo y el segundo a los núcleos Figura 1.14 (a). En este caso el proceso de clasificación consistirá en tomar como umbral el valle entre ambos picos

y dar el valor 255 a los píxeles con un valor superior al umbral dejando con el valor 0 los restantes. Figura 1.14 (b).

La segmentación puede realizarse de modo interactivo visualizando como queda la imagen según varía el valor del umbral, o de modo automático, donde el ordenador determina el valor de los umbrales de segmentación siguiendo diversos criterios estadísticos [44, 46].

Figura 1.14. (a) Imagen de niveles de gris de núcleos celulares y su correspondiente histograma, (b) Imagen segmentada.

En las imágenes en color también es posible aplicar criterios de segmentación para transformarlas en imágenes binarias. Cuando se utilizan marcadores específicos en imágenes histológicas podemos utilizar el color como criterio para segmentar la imagen y obtener los objetos teñidos con ese marcador. En una imagen en color se trabaja con tres umbrales de segmentación, uno para cada banda del espectro.

1.2.6. Imagen binaria

La imagen binaria resultante del proceso de segmentación puede que no represente perfectamente los objetos de interés debido a problemas inherentes en la imagen original, como objetos que se tocan (Figura 1.14 (b)), o problemas del propio proceso de las imágenes, por ejemplo, pequeñas áreas mal clasificadas. Con el fin de solucionar estos problemas se pueden aplicar distintos operadores morfológicos para: separar zonas, cribar áreas de determinados tamaños, erosionar o dilatar regiones, mirar conectividades, extraer bordes, etc.

Dos de las operaciones morfológicas más utilizadas en análisis de imágenes son la erosión y la dilatación. La primera consiste en examinar cada píxel y cambiarlo de *ON* a *OFF* si alguno de sus vecinos está en *OFF*. Normalmente se utilizan como vecinos los ocho que rodean al píxel examinado, aunque para algunas aplicaciones se pueden utilizar conectividades de 4 vecinos (los 2 verticales y los 2 horizontales) e incluso conectividades de 2 vecinos (los verticales o los horizontales). La dilatación es el proceso inverso, consiste en cambiar los píxeles de *OFF* a *ON* si alguno de sus vecinos esta *ON*. Al resultado de una erosión más una dilatación se le denomina apertura (*opening*). El nombre proviene de la tendencia de esta secuencia de operaciones a separar (abrir) puentes de unión entre objetos próximos o a abrir cavidades próximas al borde. La operación opuesta (dilatación más erosión) es denominada cierre (closing) y puede usarse para conectar objetos muy próximos o para rellenar pequeños huecos. El proceso de apertura puede utilizarse para eliminar pequeños objetos de la imagen.

Aunque con un proceso de apertura es posible, en algunos casos, separar objetos que se tocan, la mayoría de las veces es preciso utilizar un procedimiento más complejo para separarlos. Uno de los más utilizados es el denominado *Watersheed* o segmentación por línea de valle.

1.2.7. Cuantificación

Una vez que las imágenes binarias muestran de una forma individualizada los objetos que se desea cuantificar, se procederá a su identificación y medida. Los parámetros a medir se pueden clasificar en:

- Morfométricos. Aquellos que miden tamaño, forma, orientación y relaciones espaciales de los objetos.
- Densitométricos. Miden nivel de gris o parámetros derivados del nivel de gris (transmitancia, densidad óptica, etc.).

Para que los valores medidos se obtengan en unidades reales (micrómetros, milímetros, metros, etc.) es preciso realizar previamente una calibración de la imagen. La calibración consiste en calcular el tamaño del píxel en unidades reales.

Para ello se digitaliza una imagen en la que se conozca una longitud. En el caso de imágenes microscópicas se utiliza una preparación con un micrómetro en la que cada división representa

10 µm. Una vez digitalizada la imagen se marca con el ratón la distancia conocida y se da su valor, como el programa conoce cuantos píxeles hay en la distancia marcada nos puede calcular el tamaño del píxel en unidades reales. A este valor también se le denomina resolución del píxel y se define como la distancia más pequeña que podemos discriminar en nuestra imagen.

Parámetros morfométricos.

Dentro de estos podemos distinguir entre parámetros globales, aquellos que se aplican a una determinada estructura pero sin distinguir detalles de cómo se organizan sus componentes y parámetros objeto, que cuantifican tamaño y forma de cada objeto considerado individualmente.

Parámetros globales:

Se puede obtener el porcentaje de un determinado componente en la imagen. Este porcentaje calculado en el plano de imagen es equivalente al porcentaje en volumen de dicho componente.

$$V_{\nu} = \frac{\sum pixels \ (componente)}{\sum pixels \ (totales)} * 100$$

Superficie específica: Superficie de un determinado componente de la imagen por unidad de volumen. Para una sección plana de muestra el valor de la superficie específica viene dado por:

$$Sv = rac{4}{\pi} rac{\sum Bi \ (obj)}{\sum Ai \ (ref)}$$

Donde:

 $\sum_{i=1}^{n} \text{Bi (obj)} = \text{longitud de los bordes del componente.}$ $\sum_{i=1}^{n} \text{Ai (ref)} = \text{Área de referencia.}$

36

Número por unidad de área: Número de objetos individualizados que tenemos por unidad de área.

$$Num \acute{A} rea = \frac{Num}{\sum Ai \ (ref)}$$

Cuando se trata de contar el número de objetos por unidad de área es preciso tener en cuenta aquellos que aparecen parcialmente en la imagen.

Parámetros objeto:

Área: Se calcula contando el número de píxeles que forman cada objeto y multiplicándolo por la resolución del píxel al cuadrado.

 $Area = NPIX * Resol^2$

Perímetro: Se obtiene a partir de las coordenadas del borde de cada objeto, calculando su longitud y multiplicándola por la resolución del píxel.

v = segmento vertical.h = segmento horizontal.d = segmento diagonal

Perímetro convexo: Se define como la longitud de una línea convexa que circunscribe el objeto a medir.

Diámetro Feret 0, Feret 90: Estos parámetros también conocidos como Feret x y Feret y se definen como la distancia entre un par de líneas paralelas, tangentes al objeto en un determinado ángulo.

Diámetro máximo y mínimo (longitud y anchura): Se obtienen calculando los valores máximos y mínimos de los Ferets en varias direcciones (normalmente 64. A partir de las coordenadas que definen el diámetro máximo es posible calcular su ángulo con la horizontal, lo que permite conocer la orientación del objeto.

 $\begin{aligned} Dmax &= Max \, [DP \, (l)]_{l=1..64} \\ Dmin \, x &= Min \, [DP \, (l)]_{l=1..64} \\ DPl &= Feret \, para \, una \, dirección \, determinada \end{aligned}$

Forma circular (FC): Se basa en relacionar la superficie del objeto con la de un círculo de igual área. Puede tener valores entre 0 y 1 (FC = 1 objetos circulares).

S =área del objeto; P = Perímetro del objeto

Elongación (*Aspec Ratio*): Relación entre el diámetro mínimo y el diámetro máximo. Vale 1 para objetos equidimensionales y tiende a 0 para objetos alargados.

Forma rugosa (FR): Este parámetro también denominado convexidad relaciona el perímetro convexo del objeto con su perímetro total.

Cuando se realiza una cuantificación con un sistema de análisis de imágenes es necesario conocer el procedimiento de cálculo de los diferentes parámetros para poder interpretar correctamente los datos obtenidos.

1.2.8.1. Software de procesamiento de imágenes digitales

1.2.8.1.1. Todo sobre ImageJ

ImageJ es un programa de procesamiento de imagen digital de dominio público programado en Java desarrollado en el *National Institutes of Health*. [16] ImageJ fue diseñado con una arquitectura abierta que proporciona extensibilidad vía *plugins* Java y macros (macroinstrucciones) grabables. [17] Se pueden desarrollar *plugins* de escaneo personalizado, análisis y procesamiento usando el editor incluido en ImageJ y un compilador Java. Los *plugins* escritos por usuarios hacen posible resolver muchos problemas de procesado y análisis de imágenes, desde imágenes en vivo de las células en tres dimensiones, [14] procesado de imágenes radiológicas, [17] comparaciones de múltiples datos de sistema de imagen [15] hasta sistemas automáticos de hematología [14].

ImageJ puede ejecutarse en un *applet* en línea, como aplicación ejecutable, o en cualquier computadora con Máquina virtual Java 5 o superior. Hay también distribuciones descargables para Microsoft Windows, Mac OS, Mac OS X, Linux, y Sharp Zaurus PDA. El código fuente de ImageJ está disponible gratuitamente [47].

El desarrollador principal del proyecto, Wayne Rasband, está en el *Research Services Branch* del *National Institute of Mental Health⁵*.

ImageJ puede mostrar, editar, analizar, procesar, guardar, e imprimir imágenes de 8 bits (256 colores), 16 bits (miles de colores) y 32 bits (millones de colores). Puede leer varios formatos de imagen incluyendo TIFF, PNG, GIF, JPEG, BMP, DICOM, FITS, así como formatos RAW. ImageJ aguanta pilas o lotes, una serie de imágenes que comparten una sola ventana, y es multiproceso, de forma que las operaciones que requieren mucho tiempo se pueden realizar en paralelo en hardware multi-CPU.

ImageJ puede calcular el área y las estadísticas de valor de píxel de selecciones definidas por el usuario y la intensidad de objetos umbral (*thresholded objects*). Puede medir distancias y ángulos. Se puede crear histogramas de densidad y gráficos de línea de perfil. Es compatible con las funciones estándar de procesamiento de imágenes tales como operaciones lógicas y aritméticas entre imágenes, manipulación de contraste, convolución, Análisis de Fourier, nitidez, suavizado, detección de bordes y filtrado de mediana. Hace transformaciones geométricas como ampliar, rotación y *flips*. El programa es compatible con cualquier número de imágenes al mismo tiempo, limitado solamente por la memoria disponible.

Antes del lanzamiento de ImageJ en 1997, existía un programa de análisis de imagen conocido como NIH Image desarrollado para ordenadores Macintosh de sistema operativo preMac OS X. El desarrollo de este software continúa en la forma de Image SXM, una variante para investigación física de imágenes microscópicas escaneadas. También fue desarrollada una versión para Windows, portada por *Scion Corporation*, llamada Scion Image for Windows. Ambas versiones están aún disponibles.

1.3. Pirolusita

El nombre del mineral pirolusita procede del griego, piro que es fuego y lousis que es lavadura, ya que en la antigüedad se usaba para quitar el color verdoso que le daba al vidrio la presencia de componentes de hierro⁶. Lo más normal es que la pirolusita tenga un origen sedimentario, formado por deposición de manganeso en un ambiente de sedimentación lacustre o en ciénagas.

También en otras ocasiones se forma como producto de la oxidación por factores climáticos de otros minerales del manganeso (Mn). Muy común en todo el mundo y, junto con la rodocrosita, es la principal mena del manganeso. Se conocen cristales de hasta 20 mm en Horní Blatná (República Checa). Existen brillantes agregados radiales en Öhrenstock (Alemania). Se da también en Ilfeld (Alemania), y en grandes yacimientos de Mn sedimentarios, como principal constituyente, cerca de Ghiaturi, Georgia, y de Nikepol (Ucrania). Se han descrito también en Tsumeb (Namibia) y Hotazel (Sudáfrica). Enormes depósitos de pirolusita se están explotando en Georgia, en el Decán (India), Brasil, Ghana y Sudáfrica. En España hay importante yacimientos en Asturias y Huelva.

1.3.1. Propiedades químico-físicas de la pirolusita

La pirolusita es un mineral del grupo de los óxidos, que puede presentar una gran cantidad de hábitos cristalinos, aunque en general se presenta en forma de agregados cristalinos fibrosos. Químicamente es óxido de manganeso. Su tenacidad es frágil. Se presenta en filones hidrotermales, en la zona de oxidación; en sedimentos como oolites. Su origen es secundario, como resultado de la alteración de manganita y otros minerales de Mn primarios, también hidrotermal. Algunas de sus propiedades se muestran en la Tabla 1.2.

⁶ Microsoft [®] Encarta [®] 2009. © 1993-2008 Microsoft Corporation. Reservados todos los derechos.

Dureza	6 pero en agregados a menudo aparentemente mucho más inferior		
Densidad	4,9 - 5,1		
Raya	Negra		
Color	Negro, gris acero		
Brillo	Metálico o mate		
Exfoliación – Fractura	Perfecta – irregular		
Cristalización	Sistema tetragonal		
Transparencia	Opaco		
Morfología	Cristales estriados prismáticos a aciculares, agregados estalactíticos		
	y botrioidales, masas granulares y masas compactas		

Tabla 1.2. Propiedades químico-físicas de la pirolusita.

1.3.2. Uso de la pirolusita en la industria

Es una de las principales menas de manganeso. Como es un agente oxidante se usa para la fabricación de cloro y desinfectantes (permanganatos). También se usa para la decoloración del vidrio, pues cuando se funde con el vidrio material colorante en la fabricación de pinturas verdes y violeta y en tintes para telas o para dar colores violeta o ámbar a azulejos y cerámica. Se asocia a manganita, psilomelaná, limonita. Minerales semejantes son manganita, de raya parda; criptomelana, más blanda y diferente de color; antimonita, no tan frágil. La extracción de manganeso de la pirolusita se lleva a cabo por electrólisis.

CAPÍTULO II MATERIALES Y MÉTODOS

2.1 Materias primas

La pirolusita generalmente es envasada en sacos de polipropileno a 40 kg con una distribución de tamaño de las partículas que oscila en dependencia de la planta de pre-procesamiento en la mina. El posterior procesamiento de esta materia prima dependerá de estas características morfológicas, por lo que se hace necesaria una caracterización inicial.

2.1.1 Caracterización morfológica del mineral por análisis de imagen

La caracterización morfológica de la pirolusita es realizada mediante imágenes digitales adquiridas por una cámara digital, y procesadas por el software ImageJ.

La toma de las fotografías se realiza colocando hojas blancas (tipo carta) sobre una mesa y se le coloca una regla milimetrada para tener una referencia dimensional de la foto. Se esparcen las partículas del mineral sobre los papeles y se digitaliza la imagen con flash, para que no sea entorpecido el tamaño del grano con su sombra proyectada sobre la superficie, luego son transferidas a la computadora para ser analizadas por el

software mencionado.

La tabla 2.1 muestra las características técnicas de la cámara digital marca BENQ C850usada para adquirir las imágenes en formato JPG.

Tabla 2.1. Características
técnicas de la cámara digital

	U
Tamaño del	6,2 – 18,6 mm
lente:	
Luminosidad:	1:2,8 ~ 5,2
Resolución:	8 Mega Píxeles

2.1.2. Procesamiento mediante ImageJ

El procesamiento de las imágenes digitales adquiridas es realizado por el software ImageJ, para ello se debe realizar una serie de pasos que son mostrados a continuación:

- 1. Ejecutar el programa,
- 2. Ir al menú File y dar clic en Open. Se procede a escoger la imagen a procesar,
- 3. Cuando está cargada en pantalla se selecciona la herramienta *Straight Line* para crear una línea con la cual haga referencia a una longitud conocida. Se puede ampliar la imagen con la opción *Magnifying glass* o con Ctrl + (–) se disminuye. Se mantiene el

clic presionado desde el punto inicial hasta el punto donde termina la longitud y se libera el clic.

- 4. Ir al menú *Analize*, *Set Scale* y al salir la ventana se fijan los valores en la casilla de *Know distance* (distancia conocida): 1 y en la casilla *Unit of length* (unidad de longitud): mmy se presiona Ok, con esto se le está comunicando al programa que la recta trazada se corresponde con un milímetro (o una unidad de medida conocida). Esto permite el ajuste de la imagen con una escala real para hacer un recuento de las partículas y de sus parámetros.
- 5. En dependencia de los bordes de grano en la imagen con Ctrl + Shift + C, al tener la imagen con el brillo y el contraste adecuado mediante la ventana que se presenta, se procede a convertir la imagen a binaria con *Process, Binary, MakeBinary*.
- 6. Luego se procede a seleccionar el área que se precisa tener en cuenta para realizar el análisis de las partículas para ello se utilizan las herramientas *Rectangle Tool* o una de las cuatro primeras a su lado usándolas igual que la herramienta para seleccionar el milímetro, obteniendo de esta forma una zona bien enmarcada para procesar.
- 7. Se escogen los parámetros que se necesitan obtener en: *Analize*, *Set Measurements*(en este caso se seleccionan todos)
- 8. Se continua con *Analize*, *Analize Particles*, aparece una ventana se selecciona en Show: Outlines (líneas exteriores, contorno de granos en caso de ser un material particulado) y se presiona Ok.
- Inmediatamente se mostrará una ventana con el nombre de *Results*, con Ctrl+S se escoge donde guardar y presionar *Enter*, se obtiene un archivo en formato Excel (.xls) para luego trabajar con los datos obtenidos.

2.2 Toma de la muestra de pirolusita (muestreo)

El muestreo usado es del tipo "muestreo aleatorio simple sin reposición". Se realiza tomando una muestra del depósito de pirolusita con una pala en pequeñas cantidades tomadas al azar, siempre de diferentes lugares y de tal modo que la muestra tenga un peso similar. Esto permite tener una muestra que sea lo más representativa posible del volumen total del mineral y no solamente a un punto en específico incurriendo en un grave error con la inconsistencia de los resultados.

La distribución granulométrica de esta muestra de pirolusita es caracterizada por análisis de imagen, para luego seleccionar un rango determinado de tamaño para el estudio de molturabilidad.

2.2.1. Diseño y construcción de dispositivo de cuarteo

La muestra de pirolusita obtenida del depósito tiene un peso de 15,73 kg, lo que constituye una limitante para el estudio previsto, dada las características del equipamiento. Lo que hace necesario realizar un cuarteo con mayor precisión en cuanto a la representatividad de las características morfológicas.

El dispositivo de cuarteo se diseña mediante el software Mechanical Desktop V.6.0, Anexo II-P, el que se acopla a un equipo de mezcla de machos de fabricación Soviética (Figura 2.1) con el propósito de lograr un vertido del sólido más homogéneo.

El contenedor del material se puede voltear para vaciarlo y tiene aspas para mantener la mezcla en movimiento mientras va a ser cuarteada (Figura 2.1 (II)). Se pueden utilizar los dos direcciones de rotación que son controlados por botones al igual que el encendido y apagado de la máquina. Este movimiento facilita que durante el vertido la mezcla sea homogénea. El equipo posee un sistema de seguridad para evitar introducir accidentalmente las manos u otro objeto durante el movimiento.

El dispositivo diseñado (Anexo II-P, Planos) permite cuartear el flujo de partículas en 1/10 del peso total que se vierte en movimiento y se coloca o retira con facilidad evitando afectar la función original de diseño del equipo empleado (Figura 2.1 (II)).

Figura 2.1: (I) Equipo de moldeo de machos, (a) contenedor, (b) palanca, (c) cajón de mecanismo, (d) embudo, (e) dispositivo de cuarteo, (f) cajón; (II) Detalle del contenedor, (g) aspas, (h) pirolusita; (III) Dispositivo de cuarteo (modificación del diseño de Anexos II-P).

Este equipo de mezclado se encontraba en desuso por un largo período de tiempo, por lo que la adecuación con un dispositivo para el cuarteo permite reincorporarlo al parque activo de equipamientos del Centro de Investigaciones de Soldadura (CIS).

2.2.2 Diseño experimental para validar dispositivo de cuarteo. Procesamiento estadístico de los resultados

Con el objetivo de validar el equipo de cuarteo construido se realiza un diseño experimental tomando como variable independiente a la posición del dispositivo (P1 y P2) en la salida del embudo (Figura 2.2) y como variable dependiente el peso de la muestra (g) que sale por el dispositivo y es retenida en bolsa de plástico. Las muestras obtenidas corresponden a un muestreo aleatorio con reposición, lo que permite una igualdad de condiciones iniciales en cada experimento.

La muestra original del concentrado de pirolusita es tamizada para usar la fracción granulométrica -5 + 3 mm, lo que permite realizar un estudio de menor complejidad.

Se toman los 4,1 kg de pirolusita (fracción granulométrica - 5 + 3 mm) y se colocan dentro del contenedor (Figura 2.1 (II)). Seguidamente se enciende el mecanismo de mezcla y se agita

durante 15 s, luego se descarga y pasan por el dispositivo de cuarteo, que tiene acoplada una bolsa de plástico.

Figura 2.2. (I) Área que ocupa el dispositivo de cuarteo en el embudo del equipo de moldeo de machos. (a) Embudo, (b) dispositivo en la posición 1, (c) posición 2 del dispositivo; (II) Recolector de la pirolusita después de realizado el cuarteo. (d) Contenedor de la muestra cuarteada, (e) cajón.

Posteriormente se pesa el total adquirido en la bolsa, se une nuevamente la muestra y se vuelve a pasar por el dispositivo. Esto se realiza 15 veces para luego colocar el dispositivo en la otra posición (Figura 2.2. (c)).

Los datos de las dos posiciones se procesan estadísticamente para comprobar si la variabilidad de los valores de peso adquiridos en esas dos posiciones no es significativa. Se emplean estadígrafos de posición y de dispersión para describir las distribuciones, así como técnicas no paramétricas para comprobar la homogeneidad de los resultados.

2.3 Procesamiento experimental para el estudio de molturabilidad de la pirolusita

Como se conoce, el molino de bolas permite fragmentar las materias primas hasta una granulometría deseada, usando la energía del movimiento del tambor y el movimiento de las bolas. Uno de los factores que más influye en la eficiencia de la molienda es la relación del peso de las bolas con el peso del material a moler, siendo este parámetro, el objetivo de este estudio de molturabilidad en la pirolusita.

2.3.1 Selección del molino de bolas y parámetros experimentales. Características de consumo

Se utiliza un molino de bolas de laboratorio (Figura 2.3). El material del tambor es mullita con un volumen útil de 700 ml. El movimiento es proporcionado por un motor de 220 V con velocidad variable que oscila desde 10 hasta 500 rpm.

Se usan 6 bolas de manganeso con un peso total de 448 g. Estas tienen un volumen de 50 ml que representa una relación volumétrica respecto al molino,

Figura 2.3. Molino de bolas, (a) tambor, (b) motor eléctrico.

siendo de esta manera las bolas con respecto al molino una fracción de 1/14. Esta relación se encuentra en los valores típicos para este tipo de molino [48-51].

La velocidad de rotación seleccionada es de 100 rpm, esto permite que la molienda ocurra por procesos fundamentalmente de rodadura, evitando el impacto.

2.3.2 Diseño experimental para el estudio de molturabilidad

El diseño de experimentos se realiza con la ayuda del software STATGRAFICS ver. 15,0 y es un diseño factorial de tres niveles. Las variables independientes son el tiempo de molienda y la relación de peso carga/bolas, ambos con tres niveles y como variables dependientes el peso de la fracción granulométrica menor de 1,5 mm.

El objetivo de este diseño es lograr la mejor combinación del tiempo y la relación carga/bolas para lograr un producto fino (fracción < 1,5 mm).

CAPÍTULO III ANÁLISIS Y DISCUSIÓN DE RESULTADOS

En este capítulo se realiza el análisis y discusión de los resultados obtenidos durante la validación experimental del dispositivo de cuarteo diseñado y construido, así como la caracterización morfológica del concentrado de pirolusita mediante el procesamiento digital de imágenes y procesamientos estadísticos.

3.1. Validación experimental del dispositivo de cuarteo

Los datos del peso de la muestra obtenido según el procedimiento explicado en el Epígrafe 2.2.2 son procesados estadísticamente. Esto permite comprobar que con independencia de la posición del dispositivo de cuarteo (posición 1 y posición 2) en la salida del embudo (Figura 2.2) se obtienen valores que sus variaciones no son estadísticamente significativas.

3.1.1. Estadísticos descriptivos

La tabla 3.1 contiene el resumen estadístico para las dos muestras de datos. En las medidas de tendencia central no se observa una gran variación entre ambas muestras, en cuanto a las medidas de dispersión se evidencia una cierta diferencia en la varianza, desviación estándar y en el coeficiente de variación, pero no son suficientes para asegurar que las diferencias entre los estadísticos de las dos muestras son estadísticamente significativas.

Estadígrafos	UM	Posición 1	Posición 2
Recuento	u	15	15
Promedio	g	1457,73	1460,6
Mediana	g	1465,0	1456,0
Moda	g	1510,0	
Varianza		2769,35	3686,26
Desviación Estándar		52,6246	60,7146
Coeficiente de Variación	%	3,61003	4,15682
Mínimo	g	1344,0	1370,0
Máximo	g	1522,0	1572,0
Sesgo Estandarizado		-1,23875	0,260783
Curtosis Estandarizada		-0,131459	-0,756217

Tabla 3.1. Resumen Estadístico para las muestras de peso en la posición 1 y 2

Las medidas de forma (sesgo estandarizado y la curtosis estandarizada) se utilizan para comparar si las muestras provienen de distribuciones normales. Debido a que los valores de estos estadísticos de forma están en el rango de -2 a +2 no indican desviaciones significativas de la normalidad, lo que permite aplicar pruebas que comparan las desviaciones estándar. En este caso, ambos valores de sesgo estandarizado se encuentran dentro del rango esperado. Ambas curtosis estandarizadas se encuentran dentro del rango esperado.

Por otra parte el histograma de frecuencias de la muestra de datos usando un cuadro de barras dual (Figura 3.1) representa el número de observaciones en los intervalos adyacentes, cada uno cubre 20 g de peso. El histograma que se encuentra arriba de la línea es para la muestra que se obtuvo al poner el dispositivo de cuarteo en la posición 1 mientras que el histograma debajo de la línea representa a la muestra que obtuvo en la posición 2. Esta comparación solo aporta elementos cualitativos en cuanto a la significación de las diferencias en los pesos obtenidos.

Figura 3.1. Gráfico de distribución de frecuencias en la posición 1 y 2 de colocación del dispositivo de cuarteo

Estos estadísticos descriptivos sugieren que existen diferencias entre las dos muestras. Para determinar si las diferencias aparentes son estadísticamente significativas y no es sólo por los tamaños pequeños de las muestras, se realizan pruebas de hipótesis. La Comparación de las

Desviaciones Estándar mediante una Prueba F determina si las desviaciones estándar son significativamente diferentes.

3.1.2. Comparación de las desviaciones estándar

La Tabla 3.2 muestra los Estadísticos Muestrales: las desviaciones estándar muestrales, varianzas y grados de libertad. El Radio de Varianzas: indica que la varianza en la primera muestra solo está 0,75 veces arriba de la varianza de la segunda muestra.

	Posición 1	Posición 2
Desviación Estándar	52,6246	60,7146
Varianza	2769,35	3686,26
Gl	14	14
Razón de Varianzas $= 0.7$	51264	

Tabla 3.2. Comparación de Desviaciones Estándar

Intervalos	de	confianza	del 95,0 %	
				_

Desviación Estándar de Posición 1: [38,5279; 82,9942] Desviación Estándar de Posición 2: [44,4507; 95,7528] Razones de Varianzas: [0,252222; 2,23771

Prueba-F para	comparar	Desviaciones	Estándar
---------------	----------	--------------	----------

Hipótesis Nula: sigma1 = sigma2 Hipótesis Alt.: sigma1 <> sigma2 F = 0,751264 valor-P = 0,59978 No se rechaza la hipótesis nula para alfa = 0,05

La prueba-F compara las varianzas de las dos muestras y construye intervalos o cotas de confianza para cada desviación estándar y para la razón de varianzas. El intervalo de confianza para la razón de varianzas, se extiende desde 0,252222 hasta 2,23771. Puesto que el intervalo contiene el valor de 1, no hay diferencia estadísticamente significativa entre las desviaciones estándar de las dos muestras con un nivel de confianza del 95,0 %.

También se ejecuta una prueba-F para evaluar la hipótesis específica acerca de las desviaciones estándar de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si el cociente de las desviaciones estándar es igual a 1,0 respecto a la hipótesis alternativa de que el cociente no es igual a 1,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.
Los resultados obtenidos mediante este estadígrafo de dispersión evidencian que no hay diferencias estadísticamente significativas entre las desviaciones estándar de las dos muestras con un nivel de confianza del 95,0 %.

3.1.3. Prueba de Kolmogorov-Smirnov

La prueba de *Kolmogorov-Smirnov* realiza una prueba formal de la hipótesis nula que las dos muestras provienen de la misma

Tabla 3.3. Prueba de Kolmogorov-Smirnov
Estadístico DN estimado = 0,266667
Valor P aproximado = 0,660386

población (Tabla 3.3). Lo hace al calcular la máxima distancia entre las distribuciones empíricas.

Los resultados muestran que la distancia máxima solamente es 0,266667, por otra parte debido a que el valor-P es mayor que 0,05, concluye que no hay diferencia estadísticamente significativa entre las dos distribuciones con un 95,0 % de confianza.

El procesamiento estadístico de los resultados de pesos, obtenidos al cuartear la muestra mediante el dispositivo de cuarteo ubicado en la posición 1 ó 2, evidencian que no existen diferencias significativas con un nivel de confianza del 95,0 %. Esto permite validar el empleo en la investigación del dispositivo de cuarteo modificado (Figura 2.1 (III)) a partir del diseño (Anexos II-P) y construido para tal efecto.

3.2. Caracterización morfológica de la pirolusita

3.2.1. Procesamiento digital de la foto del concentrado de pirolusita

La extracción o muestreo del depósito de pirolusita se realiza de acuerdo a lo establecido en el epígrafe 2.2, garantizando tener una muestra lo más representativa posible del volumen total del mineral.

La muestra del mineral tiene un peso de 15,75 kg, por lo que se cuartea usando un "apilado y cuarteado" descrito en el epígrafe 1.1.2.1. Se reduce la muestra hasta 950 g la que se esparce sobre cuatro hojas de papel blanco y es fotografiada (Figura 3.2).

Figura 3.2. Foto del concentrado de pirolusita.

La foto es cargada y procesada en el software ImageJ V. 1.44 aplicándole el procedimiento descrito en el epígrafe 2.1.2. La Figura 3.3 muestra el resultado obtenido.

Figura 3.3. Procesamiento digital de la foto del concentrado de pirolusita: (a) Imagen binaria, (b) Selección de frontera y conteo de las partículas.

A partir de los resultados del análisis cuantitativo de las partículas (Anexo III-T, Tabla 1), se puede caracterizar la morfología y la distribución granulométrica del concentrado de pirolusita.

3.2.2. Cuantificación morfométrica del concentrado de pirolusita

3.2.2.1. Parámetros globales, análisis estadístico descriptivo del diámetro del área proyectado

Los resultados de los estadísticos descriptivos para el Diámetro del área proyectada (Tabla 3.4) muestra que para una población de 732 partículas, el valor mínimo es de 0,27 mm y el máximo de 19,31 mm. Las medidas de tendencia central muestran que el promedio es de 4,06 mm, con una mediana de 3,45 mm y una moda de 0,27 mm. Las medidas de variabilidad muestran una varianza de 7,68 mm, desviación estándar de 2,77 mm y un coeficiente de variación del 68,26 %.

Estadígrafos	UM	Valor
Recuento	U	732
Promedio	mm	4,05961
Mediana	mm	3,4531
Moda	mm	0,273
Varianza	mm	7,6798
Desviación Estándar	mm	2,77124
Coeficiente de Variación	%	68,2638
Mínimo	mm	0,273
Máximo	mm	19,3133
Sesgo Estandarizado		21,2573
Curtosis Estandarizada		31,6157

Tabla 3.4. Resumen Estadístico para Diámetro del área proyectada

De particular interés son el sesgo estandarizado y la curtosis estandarizada, las cuales pueden utilizarse para determinar si la muestra proviene de una distribución normal. Valores de estos estadísticos fuera del rango de -2 a +2 indican desviaciones significativas de la normalidad, lo que tendería a invalidar cualquier prueba estadística con referencia a la desviación estándar. En este caso, el valor de sesgo estandarizado no se encuentra dentro del rango esperado para datos provenientes de una distribución normal. El valor de curtosis estandarizada no se encuentra dentro del rango esperado para datos provenientes de una distribución normal.

En la Figura 3.4 se puede observar gráficamente la distribución de los diámetros. A pesar de emplear estadísticos descriptivos en un procesamiento primario, se puede concluir que la

distribución granulométrica del concentrado de pirolusita no se ajusta a una distribución normal.

Figura 3.4. Gráfico de los tamaños de partícula del concentrado de pirolusita.

A partir de la tabla de frecuencias (Anexo III-T, Tabla 2) que se realiza dividiendo el rango de Diámetro del área proyectada en intervalos del mismo ancho (11 clases), y contando el número de datos en cada intervalo (Anexo III-T, Tabla 1), se construye el histograma de frecuencias (Figura 3.5).Las frecuencias muestran el número de datos en cada intervalo, mientras que las frecuencias relativas muestran las proporciones en cada intervalo.

Se observa que la mayor frecuencia (292) corresponde a la fracción de 1,81 hasta 3,64 mm, con un punto medio de 2,72 mm, lo que constituye el máximo de la distribución unimodal con una frecuencia relativa del 40 %.

3.2.2.2. Parámetros globales, análisis estadístico no paramétrico y paramétrico del diámetro del área proyectado

Los resultados de los diámetros se procesan mediante estadígrafos paramétricos y no paramétricos para evaluar su distribución y realizar una caracterización más rigurosa.

La Tabla 3.5 muestra los resultados de diversas pruebas realizadas para determinar si el Diámetro del área proyectada puede modelarse adecuadamente con una distribución normal.

Prueba	Estadístico	Valor-P	
Chi-Cuadrado	287,598	0,0	
Estadístico W de Shapiro-Wilk	0,846554	0,0	
Valor-Z para asimetría	10,3124	0,0	
Valor-Z para curtosis	9,46268	0,0	

Tabla 3.5. Pruebas de Normalidad para Diámetro del área proyectada

La prueba de chi-cuadrada divide el rango de Diámetro del área proyectada en 53 clases igualmente probables y compara el número de observaciones en cada clase con el número esperado de observaciones.

La prueba de Shapiro-Wilk está basada en la comparación de los cuartiles de la distribución normal ajustada a los datos.

La prueba de sesgo estandarizado busca falta de simetría en los datos. La prueba de curtosis estandarizada busca si la forma de la distribución es más plana o picuda que la distribución normal.

Debido a que en todas las pruebas, el valor-P más pequeño de las pruebas realizadas es menor a 0,05, se puede rechazar la idea de que el Diámetro del área proyectada proviene de una distribución normal con 95 % de confianza.

La Tabla 3.6 muestra los resultados de la prueba de bondad de ajuste cuando varias distribuciones que se puedan ajustar a los valores del Diámetro del área proyectada. De

acuerdo con el estadístico Log Verosimilitud, la distribución de mejor ajuste es la distribución del Valor Extremo más Grande (VEMG).

Distribución	Parám. Est.	Log Verosimilitud	KS D
Valor Extremo más	2	-1644,77	0,048247
Grande			
Gamma	2	-1645,0	0,084509
Weibull	2	-1653,98	0,084289
Loglogística	2	-1654,29	0,069104
Lognormal	2	-1690,02	0,128584
Laplace	2	-1695,66	0,090884

Tabla 3.6. Comparación de Distribuciones Alternas

La Figura 3.6 muestra la comparación entre la curva de distribución Normal (color rojo) y la curva de distribución Valor extremo más grande (color azul).

Histograma para Diámetro del área proyectada

Figura 3.6. Gráfico de comparación de las distribuciones Normal y Valor extremo más grande.

Se observa que la distribución VEMG tiene un mejor ajuste a la distribución de frecuencia de los datos.

3.2.2.3. Parámetros del objeto, análisis estadístico descriptivo de la circularidad

Los resultados de los estadísticos descriptivos para el Diámetro del área proyectada (Tabla 3.7) muestra que para una población de 732 partículas, el valor mínimo es de 0,2 y el máximo de 1 (representa el círculo perfecto). Las medidas de tendencia central muestran que el promedio es de 0,82, con una mediana de 0,84 y una moda de 1. Las medidas de variabilidad muestran una varianza de 0,02, desviación estándar de 0,13 mm y un coeficiente de variación del 15,5 %.

Estadígrafos	UM	Valor
Recuento	U	732
Promedio		0,817907
Mediana		0,835785
Moda		1,0
Varianza		0,016091
Desviación Estándar		0,12685
Coeficiente de Variación	%	15,5091
Mínimo		0,20114
Máximo		1,0
Sesgo Estandarizado		-16,5499
Curtosis Estandarizada		20,0226

Tabla 3.7. Resumen Estadístico para Diámetro del área proyectada

El valor de sesgo estandarizado no se encuentra dentro del rango esperado para datos provenientes de una distribución normal tampoco sucede para el valor de curtosis estandarizada, por lo que se puede inferir que los datos no son provenientes de una distribución normal.

En la Figura 3.7 se puede observar gráficamente la distribución de la Circularidad de las partículas. Los resultados de los estadísticos descriptivos en un primer procesamiento, concluyen que la distribución de la Circularidad de las partículas del concentrado de pirolusita no se ajusta a una distribución normal.

Gráfico de Dispersión

Figura 3.7. Gráfico de la circularidad de las partículas del concentrado de pirolusita.

A partir de la tabla de frecuencias (Anexo III-T, Tabla 3) que se realiza dividiendo el rango del Diámetro del área proyectada en intervalos del mismo ancho (11 clases), y contando el número de datos en cada intervalo (Anexo III-T, Tabla 1), se construye el histograma de frecuencias (Figura 3.8).

Figura 3.8. Gráfico de distribución de frecuencias.

Las frecuencias muestran el número de datos en cada intervalo, mientras que las frecuencias relativas muestran las proporciones en cada intervalo. Se observa que la mayor frecuencia (274) corresponde a la fracción 0,82 hasta 0,91, con un punto medio de 0,86, lo que constituye el máximo de la distribución unimodal con una frecuencia relativa del38 %.

3.2.2.4. Parámetros del objeto, análisis estadístico no paramétrico y paramétrico de la circularidad

Los resultados de la Circularidad de las partículas se procesan mediante estadígrafos paramétricos y no paramétricos para evaluar su distribución y realizar una caracterización más rigurosa.

La Tabla 3.8 muestra los resultados de diversas pruebas realizadas para determinar si la Circularidad puede modelarse adecuadamente con una distribución normal.

Prueba	Valor-P	
Chi-Cuadrado	409,527	0,0
Estadístico W de Shapiro-Wilk	0,878358	0,0
Valor-Z para asimetría	8,84298	0,0
Valor-Z para curtosis	7,9079	2,66454E-15

Tabla 3.8. Pruebas de Normalidad para Diámetro del área proyectada

Debido a que en todas las pruebas, el valor-P más pequeño de las pruebas realizadas es menor a 0,05, se puede rechazar la idea de que la Circularidad Diámetro proviene de una distribución normal con 95 % de confianza.

Distribución	Parám. Est.	Log Verosimilitud	KS D
Valor Extremo más	2	564,706	0,0546997
Pequeño			
Laplace	2	540,086	0,0772849
Weibull	2	539,832	0,0640571
Logística	2	526,046	0,0661128
Normal	2	473,232	0,11117
Loglogística	2	455,455	0,0961679
Gamma	2	386,122	0,1474
Lognormal	2	330,419	0,16453

Tabla 3.9. Comparación de Distribuciones Alternas

La Tabla 3.9 muestra los resultados de una prueba de bondad de ajuste cuando varias distribuciones que se puedan ajustar a los valores de la Circularidad de la partícula. De acuerdo con el estadístico Log Verosimilitud, la distribución de mejor ajuste es la distribución del Valor Extremo Más Pequeño (VEMP).

Figura 3.9. Gráfico de comparación de las distribuciones Normal y Valor extremo más pequeño.

La Figura 3.9 muestra la comparación entre la curva de distribución Normal (color azul) y la curva de distribución Valor extremo más pequeño (color rojo). Se observa que la distribución VEMP tiene un mejor ajuste a la distribución de frecuencia de los datos.

Los resultados de la cuantificación morfométrica del concentrado de pirolusita en bruto mediante el procesamiento digital de imágenes, con el software ImageJ permiten caracterizar al mineral en cuanto a su distribución granulométrica (parámetro global) y la Circularidad de las partículas (parámetro de objeto). Se comprueba la fortaleza y eficacia de la combinación de esa herramienta con el procesamiento estadístico para estudiar las materias primas pulverulentas.

3.3. Resultados de la molturabilidad del concentrado de pirolusita

3.3.1. Caracterización morfométrica de la fracción granulométrica de partida -5 +3 mm

La Tabla 3.10 muestra la matriz experimental empleada en la investigación y los resultados de la fracción. Los valores de la carga están tomados en base al peso inicial de las bolas 448 g, por lo que para la relación de carga 0,5 será de 224 g, para la relación de carga 1 será de 448 g y para la relación de carga 1,5 será de 672 g de concentrado de pirolusita.

Relación	Tiempo	Fracción < 1,5 mm	Fracción - 5 + 3 mm
de carga	(min)	(% másico)	(% másico)
0,5	10	24,11	75,89
0,5	20	45,98	54,02
0,5	30	61,16	38,84
1	10	10,04	89,96
1	20	20,76	79,24
1	30	34,15	65,85
1,5	10	3,27	96,73
1,5	20	6,99	93,01
1,5	30	11,46	88,54

Tabla 3.10. Matriz de experimentos

Luego de moler de acuerdo con el diseño propuesto, se tamiza el concentrado molido por tamiz de 1,5 mm de apertura de forma manual durante unos 120 s aproximadamente, para luego pesar los resultados.

3.3.1.1. Parámetros globales, análisis estadístico descriptivo del diámetro del área proyectado de la fracción granulométrica de partida -5 +3 mm

Los resultados de los estadísticos descriptivos para el Diámetro del área proyectada para la fracción granulométrica de partida -5 +3 mm (Tabla 3.11) muestra que para una población de 834 partículas, el valor mínimo es de 2,61 mm y el máximo de 8,04 mm. Las medidas de tendencia central muestran que el promedio es de 4,07 mm, con una mediana de 3,89 mm y una moda de 3,63 mm. Las medidas de variabilidad muestran una varianza de 0,77 mm, desviación estándar de 0,88 mm y un coeficiente de variación del 21,53 %.

Estadígrafos	UM	Valor
Recuento	U	834
Promedio	mm	4,0716
Mediana	mm	3,8887
Moda	mm	3,6309
Varianza	mm	0,768778
Desviación Estándar	mm	0,8768
Coeficiente de Variación	%	21,5345%
Mínimo	mm	2,6134
Máximo	mm	8,0395
Sesgo Estandarizado		13,3402
Curtosis Estandarizada		8,51604

Tabla 3.11. Resumen Estadístico para Diámetro del área proyectada

El valor de sesgo estandarizado no se encuentra dentro del rango esperado para datos provenientes de una distribución normal, así como el de la curtosis estandarizada.

En la Figura 3.10 se puede observar gráficamente la distribución de los diámetros.

Figura 3.10. Gráfico de los tamaños de partícula de la fracción granulométrica -5 +3 mm.

A pesar de emplear estadísticos descriptivos en un procesamiento primario, se puede concluir que esta distribución granulométrica (fracción -5 + 3 mm) de pirolusita no se ajusta a una distribución normal.

A partir de la tabla de frecuencias (Anexo III-T, Tabla 4) que se realiza dividiendo el rango de Diámetro del área proyectada en intervalos del mismo ancho (11 clases), se construye el histograma de frecuencias (Figura 3.11). Las frecuencias muestran el número de datos en cada intervalo, mientras que las frecuencias relativas muestran las proporciones en cada intervalo.

Figura 3.11. Gráfico de distribución de frecuencias.

Se observa que la mayor frecuencia (301) corresponde a la fracción de 3,3 hasta 4,1 mm, con un punto medio de 3,75mm, lo que constituye el máximo de la distribución unimodal con una frecuencia relativa del 36 %.

3.3.1.2. Parámetros globales, análisis estadístico no paramétrico y paramétrico del diámetro del área proyectado de la fracción granulométrica de partida -5 +3 mm

La Tabla 3.12 muestra los resultados de la prueba de bondad de ajuste cuando varias distribuciones que se puedan ajustar a los valores del Diámetro del área proyectada. De acuerdo con el estadístico Log Verosimilitud, la distribución de mejor ajuste es la distribución del Valor Extremo más Grande (VEMG).

Distribución	Parám. Est.	Log Verosimilitud	KS D	
Valor Extremo Más	2	-974,742	0,0306289	
Grande				
Gaussiana Inversa	2	-1000,69	0,0616042	
Lognormal	2	-1001,0	0,0603267	
Normal	2	-1073,24	0,0992028	
Weibull	2	-1129,69	0,116396	
Laplace	2	-1695,66	0,090884	

Tabla 3.12. Comparación de Distribuciones Alternas

La Figura 3.12 muestra la comparación entre la curva de distribución Normal (color rojo) y la curva de distribución Valor extremo más grande (color azul).

Histograma para Diámetro del área proyectado

Figura 3.12. Gráfico de comparación de las distribuciones Normal y Valor extremo más grande.

Se observa que la distribución VEMG tiene un mejor ajuste a la distribución de frecuencia de los datos.

3.3.1.3. Parámetros del objeto, análisis estadístico descriptivo de la circularidad de la fracción granulométrica de partida -5 +3 mm

Los resultados de los estadísticos descriptivos para la Circularidad de la fracción granulométrica de partida -5 +3 mm (Tabla 3.13) muestra que para una población de 834 partículas, el valor mínimo es de 0,3 y el máximo de 0,963 (1 representa el círculo perfecto).

Las medidas de tendencia central muestran que el promedio es de 0,796, con una mediana de 0,82 y una moda de 0,86. Las medidas de variabilidad muestran una varianza de 0,0079, desviación estándar de 0,089 y un coeficiente de variación del 11,17 %.

Estadígrafos	UM	Valor
Recuento	U	834
Promedio		0,795639
Mediana		0,815
Moda		0,858
Varianza		0,00789349
Desviación Estándar		0,0888453
Coeficiente de Variación	%	11,1665
Mínimo		0,3
Máximo		0,963
Sesgo Estandarizado		-24,9948
Curtosis Estandarizada		37,3894

Tabla 3.13. Resumen Estadístico para la Circularidad

El valor de sesgo estandarizado no se encuentra dentro del rango esperado para datos provenientes de una distribución normal tampoco sucede para el valor de curtosis estandarizada, por lo que se puede inferir que los datos no son provenientes de una distribución normal.

En la Figura 3.13 se puede observar gráficamente la distribución de la Circularidad de las partículas.

Los resultados de los estadísticos descriptivos en un primer procesamiento, concluyen que la distribución de la Circularidad de las partículas del concentrado de pirolusita no se ajusta a una distribución normal.

Gráfico de Dispersión

Figura 3.13. Gráfico de la circularidad de las partículas de la fracción granulométrica de partida -5 +3 mm.

A partir de la tabla de frecuencias (Anexo III-T, Tabla 5) que se realiza dividiendo el rango de Diámetro del área proyectada en intervalos del mismo ancho (11 clases), se construye el histograma de frecuencias (Figura 3.14).

Figura 3.14. Gráfico de distribución de frecuencias

Las frecuencias muestran el número de datos en cada intervalo, mientras que las frecuencias relativas muestran las proporciones en cada intervalo. Se observa que la mayor frecuencia

(373) corresponde a la fracción 0,8 hasta 0,87, con un punto medio de 0,83, lo que constituye el máximo de la distribución unimodal con una frecuencia relativa del 45 %.

3.3.1.4. Parámetros del objeto, análisis estadístico no paramétrico y paramétrico de la circularidad de la fracción granulométrica de partida -5 +3 mm

La Tabla 3.14 muestra los resultados de una prueba de bondad de ajuste cuando varias distribuciones que se puedan ajustar a los valores de la Circularidad de la partícula. De acuerdo con el estadístico Log Verosimilitud, la distribución de mejor ajuste es la distribución del Valor Extremo Más Pequeño (VEMP).

Distribución	Parám. Est.	Log Verosimilitud	KS D
Valor Extremo más	2	1022,37	0,0385011
Pequeño			
Weibull	2	984,642	0,0606509
Laplace	2	949,148	0,0902889
Logística	2	931,432	0,0751019
Loglogística	2	861,416	0,0984484
Normal	2	836,101	0,125578
Gamma	2	386,122	0,1474
Lognormal	2	330,419	0,16453

Tabla 3.14. Comparación de Distribuciones Alternas

La Figura 3.15 muestra la comparación entre la curva de distribución Normal (color azul) y la curva de distribución Valor extremo más pequeño (color rojo). Se observa que la distribución VEMP tiene un mejor ajuste a la distribución de frecuencia de los datos.

Histograma para Circularidad

Figura 3.15. Gráfico de comparación de las distribuciones Normal y Valor extremo más pequeño.

En este caso, los resultados de la caracterización morfométrica muestra (como era de esperar) que cuando se tamiza el concentrado de pirolusita en bruto y se extrae la fracción granulométrica -5 +3 mm disminuye los parámetros de dispersión de los diámetros de las partículas (variable diámetro del área proyectada) Coeficiente de Variación 68 % y 21 % respectivamente. Esto permite tener una población para investigar la molturabilidad con menor dispersión en cuanto a su tamaño de partícula.

Por otra parte la variable Circularidad, disminuye su dispersión discretamente 15 % para el mineral en bruto y 11 % para el mineral tamizado. Esta variable evidentemente es menos sensible que la anterior porque constituye un aspecto de forma.

3.3.2. Análisis estadístico de los resultados de la molienda

La Tabla 3.15 muestra la matriz experimental empleada en la investigación y los resultados de la fracción obtenida con tamaño de partícula < 1,5 mm y a la fracción granulométrica > 1,5 mm con relaciones de carga que variaron entre 0,5; 1 y 1,5 con tiempos de molienda 10, 20 y 30 minutos para cada una de estas relaciones.

Relación de	Tiempo	Fracción < 1,5 mm	Fracción > 1,5 mm		
carga	(min)	(% másico)	(% másico)		
0,5	10	24,11	75,89		
0,5	20	45,98	54,02		
0,5	30	61,16	38,84		
1	10	10,04	89,96		
1	20	20,76	79,24		
1	30	34,15	65,85		
1,5	30	3,27	96,73		
1,5	20	6,99	93,01		
1,5	10	11,46	88,54		

Tabla 3.15. Matriz del diseño experimental del estudio de molturabilidad

La Tabla 3.16 muestra los efectos estimados para cada una de las variables y las interacciones entre estas para la Fracción < 1,5 mm. También se muestra el error estándar de cada uno de estos efectos, el cual mide su error de muestreo.

El factor de inflación de varianza (V.I.F.) más grande, es igual a 1,0. Para un diseño perfectamente ortogonal, todos los factores serían igual a 1. Factores de 10 o más, normalmente se interpretan como indicativos de confusión seria entre los efectos.

$1 abia 5.10$. Electos estimados para el peso de la fracción < 1,5 min (70 masico)				
Efecto	Estimado	Error Estd.	V.I.F.	
promedio	22,0133	2,70053		
A:Relación de carga	-36,51	2,95828	1,0	
B:Tiempo	17,6567	2,95828	1,0	
AA	7,69	5,12389	1,0	
AB	-22,62	3,62314	1,0	
BB	-1,09	5,12389	1,0	

Tabla 3.16. Efectos estimados para el peso de la fracción < 1,5 mm (% másico)

Errores estándar basados en el error total con 3 g.l.

El diagrama de Pareto mostrado en la Figura 3.16 grafica los estimados en orden decreciente de importancia.

Figura 3.16. Diagrama de Pareto Estandarizado para Fracción < 1,5 mm (% másico).

Se observa que la variable "relación de carga" es la que tiene mayor influencia en la obtención del peso de la fracción < 1,5 mm, sigue la relación entre las variables "relación de carga" y el "tiempo", la otra es propiamente la variable "tiempo".

Los resultados del análisis de varianza mostrado en la Tabla 3.17 prueba la significancia estadística de cada efecto comparando su cuadrado medio contra un estimado del error experimental en la variabilidad del peso de la fracción < 1,5 mm separados para cada uno de los efectos.

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
A:Relación de carga	1999,47	1	1999,47	152,32	0,0011
B:Tiempo	467,637	1	467,637	35,62	0,0094
AA	29,568	1	29,568	2,25	0,2304
AB	511,664	1	511,664	38,98	0,0083
BB	0,59405	1	0,59405	0,05	0,8452
Error total	39,3813	3	13,1271		
Total (corr.)	3048,31	8			
R-cuadrada = 98,7081 %					
R-cuadrada (ajustada por g.l.) = 96,5549 %					
Error estándar del est. $= 3,62314$					
Error absoluto medio $= 1,84889$					
Estadístico Durbin-Watson = 2,08993 (P=0,0871)					
Autocorrelación residual de Lag $1 = -0,097639$					

Tabla 3.17. Análisis de Varianza para el peso de la Fracción < 1,5 mm

En este caso, 3 efectos tienen una valor-P menor que 0,05, indicando que son significativamente diferentes de cero con un nivel de confianza del 95,0 %.

El estadístico R-Cuadrada indica que el modelo, así ajustado, explica 98,71 % de la variabilidad en peso de la fracción < 1,5 mm. El estadístico R-cuadrada ajustada, que es más adecuado para comparar modelos con diferente número de variables independientes, es 96,56 %. El error estándar del estimado muestra que la desviación estándar de los residuos es 3,62314. El error medio absoluto (MAE) de 1,85 es el valor promedio de los residuos. El estadístico de Durbin-Watson (DW) prueba los residuos para determinar si haya alguna correlación significativa basada en el orden en que se presentan los datos en el archivo. Puesto que el valor-P es mayor que 5,0 %, no hay indicación de autocorrelación serial en los residuos con un nivel de significancia del 5,0 %.

La Tabla 3.18 muestra los coeficientes de regresión

Coeficiente	Estimado		
constante	8,82667		
A:Relación de carga	-22,03		
B:Tiempo	3,36283		
AA	15,38		
AB	-2,262		
BB	-0,00545		

Tabla 3.18. Coef. de regresión para Peso de la Fracción < 1,5 mm

La ecuación del modelo ajustado es:

Peso de la Fracción < 1,5 mm = 8,82667 - 22,03*Relación de carga + 3,36283*Tiempo + 15,38*Relación de carga^2 - 2,262*Relación de carga*Tiempo - 0,00545*Tiempo^2

Si se aplica la optimización de la variable Respuesta (Peso de la Fracción < 1,5 mm) se obtiene que el Valor óptimo = 63,7067. La Figura 3.17 (a) muestra la combinación de los niveles de los factores, la cual maximiza Peso fracción sobre la región indicada y (b) se describe gráficamente la respuesta estimada.

Figura 3.17. (a) Tabla de relaciones para maximizar la variable; (b) Superficie de respuesta estimada.

3.3.3. Caracterización morfométrica de la fracción granulométrica > 1,5 mm

Los resultados del procesamiento estadístico evidencian que los mejores valores se obtienen con la combinación de una relación de carga de 0,5 con 30 minutos de molienda. Es precisamente en esta combinación donde se logra un mayor volumen de mineral molido que pasa por tamiz de 1,5 mm de apertura, por lo que resulta de interés para la presente investigación caracterizar morfométricamente a la fracción granulométrica > 1,5 mm para observar los cambios ocurridos en esas partículas.

3.3.3.1. Parámetros globales, análisis estadístico descriptivo del diámetro del área proyectado de la fracción granulométrica > 1,5 mm

Los resultados de los estadísticos descriptivos para el Diámetro del área proyectada para la fracción granulométrica > 1,5 mm (Tabla 3.19) muestra que para una población de 1921 partículas, el valor mínimo es de 0,16 mm y el máximo de 6,45 mm. Las medidas de tendencia central muestran que el promedio es de 1,80 mm, con una mediana de 1,60 mm y una moda de 1,28 mm. Las medidas de variabilidad muestran una varianza de 0,66 mm, desviación estándar de 0,81 mm y un coeficiente de variación del 45,21 %.

Estadígrafos	UM	Valor
Recuento	U	1921
Promedio	mm	1,79096
Mediana	mm	1,6037
Moda	mm	1,2796
Varianza	mm	0,655618
Desviación Estándar	mm	0,809702
Coeficiente de Variación	%	45,2105
Mínimo	mm	0,1596
Máximo	mm	6,4519
Sesgo Estandarizado		26,9059
Curtosis Estandarizada		35,7322

Tabla 3.19. Resumen Estadístico para Diámetro del área proyectada

El valor de sesgo estandarizado no se encuentra dentro del rango esperado para datos provenientes de una distribución normal, así como el de la curtosis estandarizada.

En la Figura 3.18 se puede observar gráficamente la distribución de los diámetros. A pesar de emplear estadísticos descriptivos en un procesamiento primario, se puede concluir que esta distribución granulométrica (fracción > 1,5 mm) de pirolusita no se ajusta a una distribución normal aunque si ha disminuido (producto del tamizado) el rango de diámetros (0,2 a 6,5 mm)

Gráfico de Dispersión

Figura 3.18. Gráfico de los tamaños de partícula de la fracción granulométrica > 1,5 mm. respecto al concentrado original (0,3 a 19,3 mm).

A partir de la tabla de frecuencias (Anexo III-T, Tabla 6) que se realiza dividiendo el rango de Diámetro del área proyectada en intervalos del mismo ancho (12 clases), se construye el histograma de frecuencias (Figura 3.19). Las frecuencias muestran el número de datos en cada intervalo, mientras que las frecuencias relativas muestran las proporciones en cada intervalo.

Figura 3.19. Gráfico de distribución de frecuencias.

Se observa que la mayor frecuencia (842) corresponde a la fracción de 1,3 hasta 1,8 mm, con un punto medio de 1,54 mm, lo que constituye el máximo de la distribución unimodal con una frecuencia relativa del 44 %.

3.3.3.2. Parámetros globales, análisis estadístico no paramétrico y paramétrico del diámetro del área proyectado de la fracción granulométrica > 1,5 mm

La Tabla 3.20 muestra los resultados de la prueba de bondad de ajuste cuando varias distribuciones que se puedan ajustar a los valores del Diámetro del área proyectada. De acuerdo con el estadístico Log Verosimilitud, la distribución de mejor ajuste es la distribución Loglogística.

Distribución	Parám. Est.	Log Verosimilitud	KS D
Loglogística	2	-2103,52	0,069512
Laplace	2	-2115,38	0,116392
Valor Extremo Más	2	-2118,22	0,0939693
Grande			
Logística	2	-2177,09	0,102073
Lognormal	2	-2317,18	0,133994
Normal	2	-2319,78	0,132589

Tabla 3.20. Comparación de Distribuciones Alternas

La Figura 3.20 muestra la comparación entre la curva de distribución Normal (color rojo) y la curva de distribución Loglogística (color azul).

Histograma para Diametro area proyectada

Figura 3.20. Gráfico de comparación de las distribuciones Normal y Valor extremo más grande.

Se observa que la distribución Loglogística tiene un mejor ajuste a la distribución de frecuencia de los datos.

3.3.3.3. Parámetros del objeto, análisis estadístico descriptivo de la circularidad de la fracción granulométrica > 1,5 mm

Los resultados de los estadísticos descriptivos para la Circularidad de la fracción granulométrica > 1,5 mm (Tabla 3.21) muestra que para una población de 1921 partículas, el valor mínimo es de 0,347 y el máximo de 1,0 (1 representa el círculo perfecto). Las medidas

de tendencia central muestran que el promedio es de 0,87, con una mediana de 0,88 y una moda de 1,0. Las medidas de variabilidad muestran una varianza de 0,0068, desviación estándar de 0,083 y un coeficiente de variación del 9,5 %.

Estadígrafos	UM	Valor
Recuento	U	1921
Promedio		0,869722
Mediana		0,88
Moda		1,0
Varianza		0,00681347
Desviación Estándar		0,0825438
Coeficiente de Variación	%	9,49082
Mínimo		0,347
Máximo		1,0
Sesgo Estandarizado		-20,0321
Curtosis Estandarizada		26,0963

Tabla 3.21. Resumen Estadístico para la Circularidad

El valor de sesgo estandarizado no se encuentra dentro del rango esperado para datos provenientes de una distribución normal tampoco sucede para el valor de curtosis estandarizada, por lo que se puede inferir que los datos no son provenientes de una distribución normal.

En la Figura 3.21 se puede observar gráficamente la distribución de la Circularidad de las partículas.

Los resultados de los estadísticos descriptivos en un primer procesamiento, concluyen que la distribución de la Circularidad de las partículas del concentrado de pirolusita no se ajusta a una distribución normal.

Gráfico de Dispersión

Figura 3.21. Gráfico de la circularidad de las partículas de la fracción granulométrica > 1,5 mm.

A partir de la tabla de frecuencias (Anexo III-T, Tabla 7) que se realiza dividiendo el rango de Diámetro del área proyectada en intervalos del mismo ancho (12 clases), se construye el histograma de frecuencias (Figura 3.22).

Figura 3.22. Gráfico de distribución de frecuencias.

Las frecuencias muestran el número de datos en cada intervalo, mientras que las frecuencias relativas muestran las proporciones en cada intervalo. Se observa que la mayor frecuencia (566) corresponde a la fracción 0,88 hasta 0,94, con un punto medio de 0,91, lo que constituye el máximo de la distribución unimodal con una frecuencia relativa del 29 %.

3.3.3.4. Parámetros del objeto, análisis estadístico no paramétrico y paramétrico de la circularidad de la fracción granulométrica > 1,5 mm

La Tabla 3.22 muestra los resultados de una prueba de bondad de ajuste cuando varias distribuciones que se puedan ajustar a los valores de la Circularidad de la partícula. De acuerdo con el estadístico Log Verosimilitud, la distribución de mejor ajuste es la distribución del Valor Extremo Más Pequeño (VEMP).

Distribución	Parám. Est.	Log Verosimilitud	KS D
Valor Extremo más	2	2200,99	0,0386401
Pequeño			
Weibull	2	2198,06	0,031016
Laplace	2	2092,91	0,0718957
Logística	2	2129,97	0,0573707
Loglogística	2	2066,39	0,0712227
Normal	2	2066,51	0,0656555
Gamma	2	1975,02	0,0828055
Lognormal	2	1918,62	0,0913313

Tabla 3.22. Comparación de Distribuciones Alternas

La Figura 3.23 muestra la comparación entre la curva de distribución Normal (color azul) y la curva de distribución Valor extremo más pequeño (color rojo). Se observa que la distribución VEMP tiene un mejor ajuste a la distribución de frecuencia de los datos.

Figura 3.23. Gráfico de comparación de las distribuciones Normal y Valor extremo más pequeño.

Se logra establecer en este epígrafe el efecto de la molienda con una relación de carga y tiempo óptimos sobre los parámetros morfométricos en las partículas del concentrado de pirolusita de partida (fracción -5 +3 mm).

Cuestión que si quizás no aporta directamente mucha información científica sirve como precedente para investigaciones donde sea necesario lograr una determinada circularidad de las partículas. Específicamente en la aplicación de dispersoides en materiales compuestos.

CONCLUSIONES

- Se establece una ecuación de regresión que establece las relaciones de carga y el tiempo para moler el concentrado de pirolusita hasta una granulometría < 1,5 mm. A su vez que se obtienen los valores óptimos de estas variables (0,5 para la relación de carga y 30 minutos para el tiempo).
- Se realiza una caracterización morfométrica exhaustiva mediante el procesamiento de imágenes digitales con el software ImageJ, combinado con el procesamiento estadístico de los resultados orientados a parámetros globales y de forma.
- Se estudia el efecto de la molienda por rodadura en molino de bolas en la morfología de las partículas para posibles aplicaciones como dispersoides en el reforzamiento de aleaciones de aluminio.

RECOMENDACIONES

- 1. Extender el uso del procesamiento digital de imágenes en la caracterización morfométrica de minerales pulverulentos.
- 2. Continuar el empleo de la caracterización digital hacia parámetros densitométricos de los materiales con vistas a aprovechar todas las bondades del método.

BIBLIOGRAFÍA

1. Askeland, D.R. and P.P. Phulé, *Ciencia e Ingenieria de los Materiales*. 4 ed. 2004: THOMSON. 1003.

2. Shackelford, J.F. and R.H. Doremus, *Ceramic and Glass Materials. Structure, Properties and Processing.* 2008, Spring Street, New York, NY 10013, USA: Springer Science+Business Media, LLC. 209.

3. SOMIYA, S., et al., *Handbook of Advanced Ceramics VOLUME II: Processing and their Applications*. 2007: Elsevier. 496.

4. Bergaya, F., B.K.G. Theng, and G. Lagaly, *Handbook of Clay Science*. 2006, Amsterdam: Elsevier.

5. Bansal, N.P., et al., *Novel Processing of Ceramics and Composites: Ceramic Transactions*. 2006: John Wiley & Sons. 202.

6. Bansal, N.P., *Handbook of Ceramic Composites* ed. S. US. 2005: Kluwer Academic Plubishers.

7. Harper, C.A., Hanbook of Ceramics, Glasses and Diamonds. 2001: McGraw-Hill 506.

8. Riedel, R., *Handbook of Ceramic Hard Materials* 2000, D-69469 Weinheiin (Federal Republic of Germany): C WILEY-VCH Verlag GmbH. 1089.

9. Richard L. Lehman, M.G.M., Victor A. Greenhut, James D. Idol, Daniel J. Strange, Steven H. Kosmatka, Weiping Wang, R. Alan Ridilla, Matthew B. Buczek, William F. Fischer, III, *"Materials" Mechanical Engineering Handbook*, ed. F. Kreith. 1999, Boca Raton: CRC Press LLC.

10. Salager, J.-L., *Granulometría teórica*, in *Modulo de enseñanza en fenómenos interfaciales*. 2007: Mérida. p. 32.

Russ, J.C., *The Image Processing Handbook*. 5 ed. 2007, Boca Raton: CRC Press (Taylor &

Francis).

12. Blott, S.J. and K. Pye, *GRADISTAT: A GRAIN SIZE DISTRIBUTION AND STATISTICS PACKAGE FOR THE ANALYSIS OF UNCONSOLIDATED SEDIMENTS*. Earth Surface Processes and Landforms, 2001. 26: p. 1237–1248.

13. Cabrera, S., R. Irigaray, and M. D., *Estudio comparativo de la determinación del tamaño de partícula por dos métodos: tamizado en seco y difracción láser*. Revista del laboratorio tenológico del Uruguay, 2010. 5.

14. Eliceiri, K. and C. Rueden, *Tools for visualizing multidimensional images from living specimens*. Photochem Photobiol, 2005: p. 1116–22.

15. Gering, E. and C. Atkinson, A rapid method for counting nucleated erythrocytes on stained blood smears by digital image analysis. J Parasitol, 2004: p. 879–81.

16. Rajwa, B., et al., *AFM/CLSM data visualization and comparison using an open-source toolkit*. Microsc Res Tech, 2004: p. 176–84.

17. Girish, V. and A. Vijayalakshmi, *Affordable image analysis using NIH Image/ImageJ*. Indian J Cancer, 2004: p. 47.

18. Dinis, P. and A. Castilho, *Integrating Sieving and Laser Data To Obtain Bulk Grain-Size Distributions*. Journal of Sedimentary Research, 2012. 82(9): p. 747-754.

19. Barusseau, J.P., *Influence of Mixtures of Grain-Size Populations on the Parametric and Modal Characteristics of Coastal Sands (Hérault, Mediterranean Sea, France).* Journal of Sedimentary Research, 2011. 81(8): p. 611-629.

20. Emeka, N.C., et al., *A Study on the Sedimentology of Tidal Rivers: Calabar and Great Kwa, S. E. Nigeria.* European Journal of Scientific Research, 2010. 47(3): p. 370-386.

21. Pabst, W. and E. Gregorová, *Characterization of particles and particle systems*. 2007:PABST & GREGOROVÁ.

22. Martins, L.R., Recent Sediments an Grain-Size Analysis. Gravel, 2003. 1: p. 90-105.

23. ASTM, *Practice for Sampling Aggregates*. 1994, ASTM International: West Conshohocken, Pennsylvania 19428-2959, United States. p. 1-4.

24. ASTM, Test Method for Material Finer than 75 Micrometre (No. 200) Sieve in Mineral Aggregates by Washing. 1995.
25. ASTM, Standard Terminology for Relating to Quality and Statistics. 1996.

26. ASTM, Standard Practice for Reporting Particle Size Characterization Data. 1997.

27. Pope, L.R. and C.W. Ward, *Manual on Test Sieving Methods Prepared by ASTM Committee E29 as Guidelines for Establishing Sieve Analysis Procedures* AMERICAN SOCIETY FOR TESTING AND MATERIALS. 1998, West Conshohocken, PA. Al.

28. ASTM, Standard Practice for Conducting an Interlaboratory Study to Determine the *Precision of a Test Method.* 1999.

29. ASTM, *Standard Test Methods for Determining Average Grain Size*. 2010, ASTM International: West Conshohocken, Pennsylvania 19428-2959, United States.

30. ASTM, Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. 2009, ASTM International: West Conshohocken, Pennsylvania 19428-2959, United States.

31. Kenneth, P., *GRANNY: A PACKAGE FOR PROCESSING GRAIN SIZE AND SHAPE DATA*. Terra Nova, 2007. 1(6): p. 588-590.

32. ASTM, *Standard Test Method for Sieve Analysis of Metal Powders*. 2007, ASTM International: West Conshohocken, Pennsylvania 19428-2959, United States. p. 1-4.

33. ASTM, *Standard Test Method for Particle-Size Analysis of Soils*. 2007, ASTM International: West Conshohocken, Pennsylvania 19428-2959, United States.

34. ASTM, *Standard Guide for Powder Particle Size Analysis*, in *ASTM International*. 2010, ASTM International: West Conshohocken, Pennsylvania 19428-2959, United States.

35. Ring, T.A., *Fundamentals of Ceramic Powder Processing and Synthesis* 1996, San Diego, California 92101-4495: Academic Press 985.

36. Barsoum, M.W., *Fundamentals of Ceramics*, ed. B.C.a.M.J. Goringe. 2003, London: The Institute of Physics. 603.

37. Heywood, H., J. Pharm. Pharmacol, 1963. Suppl. 15, 56.

38. Schwarcz, H.P. and K.C. Shane, Sedimentology, 1969. 13: p. 213-231.

39. Meloy, T.P., "Screening." AIME, Washington, DC 1969.

90

40. Meloy, T.P., *Advanced Particulate Morphology*. Advanced Particulate Morphology, ed. J.K.B.a.T.P. Meloy. 1977, Boca Raton, FL: CRC Press Inc.

41. Prodanov, D., J. Heeroma, and E. Marani, *Automatic morphometry of synaptic boutons of cultured cells using granulometric analysis of digital images*. Journal of Neuroscience Methods, 2006. 151(2): p. 168-177.

42. Pertusa, J.F., *Técnicas de análisis de imagen. Aplicaciones en Biología*. Publicacions de la Universitat de Valencia, 2003: p. 15-27.

43. Rosenfeld, A., *Some experiments on variable thresholding*. Pattern Recognition, 1979. 11: p. 191.

44. Rosenfeld, A. and A.C. Kak, *Digital Picture Processing*. Vol. 1 y 2. 1981, London: Academic Press.

45. Russ, J.C., *Computer-Assisted Microscopy, The Measurement and Analysis of Images.* . 1990, New York: Plenum Press.

46. Russ, J.C., The Image Processing Handbook. 1995, New York: CRC Press.

47. Barboriak, D., et al., *Creation of DICOM–aware applications using ImageJ*. J Digit Imaging, 2005: p. 91–9.

48. Ketegenov, T. and F. Urakaev, *Combustion of mechanically activated quartz-aluminum mixtures*. International Journal of Self-Propagating High-Temperature Synthesis, 2010. 19(2): p. 133-140.

49. Yang, Y., Z.-M. Lin, and J.-T. Li, *Synthesis of SiC by silicon and carbon combustion in air*. Journal of the European Ceramic Society, 2009. 29(1): p. 175-180.

50. Pallone, E.M.J.A., et al., *Al"20"3-WC synthesis by high-energy reactive milling*. Materials Science & Engineering A, 2007. 464(1): p. 47-51.

51. Cihangir, D., H. Göçmez., and H. Yılmaz., *Dispersion of mechanochemically activated SiC and Al2O3 powders*. Materials Science and Engineering, 2007. 474(1-2): p. 32-38.

#

	TABLE 4 Gr	rain Size Relatio	nships Compu	ted for Uniforn	n, Randomly	Oriented, E	equiaxed Gra	ins	
Grain Size No.	$\overline{N_A}$ Grains/	/Unit Area	Average (Srain Area	<u>d</u> Average	Diameter	<i>ℓ</i> Mean	Intercept	\overline{N}_L
9	No./in. ² at 100X	No./mm ² at 1X	mm²	µm²	шш	ш	mm	щ	No./mm
00	0.25	3.88	0.2581	258064	0.5080	508.0	0.4525	452.5	2.21
0	0.50	7.75	0.1290	129032	0.3592	359.2	0.3200	320.0	3.12
0.5	0.71	10.96	0.0912	91239	0.3021	302.1	0.2691	269.1	3.72
1.0	1.00	15.50	0.0645	64516	0.2540	254.0	0.2263	226.3	4.42
1.5	1.41	21.92	0.0456	45620	0.2136	213.6	0.1903	190.3	5.26
2.0	2.00	31.00	0.0323	32258	0.1796	179.6	0.1600	160.0	6.25
2.5	2.83	43.84	0.0228	22810	0.1510	151.0	0.1345	134.5	7.43
3.0	4.00	62.00	0.0161	16129	0.1270	127.0	0.1131	113.1	8.84
3.5	5.66	87.68	0.0114	11405	0.1068	106.8	0.0951	95.1	10.51
4.0	8.00	124.00	0.00806	8065	0.0898	89.8	0.0800	80.0	12.50
4.5	11.31	175.36	0.00570	5703	0.0755	75.5	0.0673	67.3	14.87
5.0	16.00	248.00	0.00403	4032	0.0635	63.5	0.0566	56.6	17.68
5.5	22.63	350.73	0.00285	2851	0.0534	53.4	0.0476	47.6	21.02
0.0	32.00	496.00	0.00202	2016	0.0449	44.9	0.0400	40.0	25.00
6.5	45.25	701.45	0.00143	1426	0.0378	37.8	0.0336	33.6	29.73
7.0	64.00	992.00	0.00101	1008	0.0318	31.8	0.0283	28.3	35.36
7.5	90.51	1402.9	0.00071	713	0.0267	26.7	0.0238	23.8	42.04
8.0	128.00	1984.0	0.00050	504	0.0225	22.5	0.0200	20.0	50.00
8.5	181.02	2805.8	0.00036	356	0.0189	18.9	0.0168	16.8	59.46
9.0	256.00	3968.0	0.00025	252	0.0159	15.9	0.0141	14.1	70.71
9.5	362.04	5611.6	0.00018	178	0.0133	13.3	0.0119	11.9	84.09
10.0	512.00	7936.0	0.00013	126	0.0112	11.2	0.0100	10.0	100.0
10.5	724.08	11223.2	0.000089	89.1	0.0094	9.4	0.0084	8.4	118.9
11.0	1024.00	15872.0	0.000063	63.0	0.0079	7.9	0.0071	7.1	141.4
11.5	1448.15	22446.4	0.000045	44.6	0.0067	6.7	0.0060	5.9	168.2
12.0	2048.00	31744.1	0.000032	31.5	0.0056	5.6	0.0050	5.0	200.0
12.5	2896.31	44892.9	0.000022	22.3	0.0047	4.7	0.0042	4.2	237.8
13.0	4096.00	63488.1	0.000016	15.8	0.0040	4.0	0.0035	3.5	282.8
13.5	5792.62	89785.8	0.000011	11.1	0.0033	3.3	0.0030	3.0	336.4
14.0	8192.00	126976.3	0.000008	7.9	0.0028	2.8	0.0025	2.5	400.0

Figura 1: Relaciones de tamaño del grano computadas por uniformidad, granos equiaxiales

ANEXOS I-F

Figura 2: Ralación entre Magnificación Usada y múltiplos de Jeffries, f, para un Área de 5000 mm² (un circulo de 79,8 mm de diámetro) (f = 0,0002 m²)

TABLE 5 Relationship Between Magnification Used and Jeffries' Multiplier, *f*, for an Area of 5000 mm² (a Circle of 79.8-mm Diameter) (*f* = 0.0002 *M*²)

Magnification Used, M	Jeffries' Multiplier, f, to Obtain Grains/mm ²
1	0.0002
10	0.02
25	0.125
50	0.5
75^	1.125
100	2.0
150	4.5
200	8.0
250	12.5
300	18.0
500	50.0
750	112.5
1000	200.0

^A At 75 diameters magnification, Jeffries' multiplier, *f*, becomes unity if the area used is 5625 mm² (a circle of 84.5-mm diameter).

ANEXOS II-P

99

ANEXOS III-T

Partícula	Área de la partícula (mm²)	Diámetro del área proyectada (mm)	Perim, (mm)	Diámetro Feret (mm)	Redondeo	Solidez
1	1,5804	1,4185	9,9366	4,8628	0,08219	0,80597
2	0,0585	0,2730	0,6843	0,3422	1	1
3	25,5788	5,7068	19,0085	6,3873	0,87199	0,92979
4	12,1163	3,9277	13,7933	4,7533	0,69893	0,89805
5	8,0190	3,1953	10,9387	4,0047	0,78834	0,9103
6	22,3595	5,3356	17,7229	6,0484	0,87123	0,93627
7	19,1402	4,9366	16,8969	6,0918	0,71534	0,91341
8	23,2375	5,4394	18,5490	6,2903	0,85336	0,9158
9	17,5013	4,7205	16,8382	6,4284	0,6075	0,9102
10	52,7380	8,1944	28,5786	9,8483	0,78663	0,94444
11	1,5804	1,4185	4,5310	1,7446	0,87372	0,87097
12	21,2474	5,2013	18,0064	6,0484	0,92895	0,92602
13	48,7578	7,8791	28,0016	10,8332	0,58747	0,93543
14	18,2622	4,8221	16,0952	5,8566	0,80015	0,94545
15	27,1007	5,8742	20,8266	7,7457	0,6919	0,90873
16	24,7008	5,6080	18,4903	6,4918	0,88254	0,94407
17	5,0924	2,5463	8,1185	2,9133	0,96887	0,94565
18	6,3801	2,8502	9,3453	3,2907	0,86877	0,91213
19	15,0429	4,3764	15,1862	5,0344	0,92531	0,88774
20	11,0627	3,7531	12,3073	4,7533	0,64763	0,95214
21	8,9555	3,3768	11,2565	4,1624	0,77833	0,91617
22	10,0091	3,5699	13,1090	4,8988	0,57134	0,85714
23	18,2037	4,8143	16,6378	6,0484	0,69627	0,9174
24	15,8624	4,4941	20,6019	6,7265	0,54137	0,80059
25	18,2622	4,8221	18,5490	7,6888	0,43273	0,89016
26	34,9441	6,6702	24,0963	8,7966	0,74282	0,92991
27	28,6811	6,0430	21,5696	7,3582	0,72408	0,90489
28	2,2243	1,6829	5,6404	2,4194	0,6405	0,90476
29	3,5120	2,1146	6,8086	2,6169	0,71352	0,94488
30	13,4040	4,1312	13,4754	4,5003	0,92756	0,94045
31	1,0536	1,1582	3,5045	1,4107	0,80112	0,94737
32	8,9555	3,3768	11,5400	4,5003	0,6193	0,91071
33	12,8772	4,0492	13,8176	4,9876	0,83855	0,90909
34	21,1303	5,1869	18,0064	6,4056	0,75788	0,93402

Tabla 1. Resultados del análisis cuantitativo del concentrado de pirolusita

35	21,0718	5,1797	18,0064	7,0161	0,58552	0,91603
36	6,0289	2,7706	9,7705	3,9680	0,65031	0,89565
37	4,8582	2,4871	8,3776	3,2278	0,65822	0,8877
38	208,9620	16,3113	59,9917	21,7608	0,6482	0,94507
39	31,4906	6,3321	31,8827	10,9541	0,39983	0,7741
40	6,3215	2,8370	9,8879	3,7559	0,65461	0,86056
41	9,8920	3,5489	11,9408	4,2321	0,75706	0,89655
42	18,9061	4,9063	17,4638	6,8771	0,54603	0,91892
43	50,5138	8,0197	27,3173	9,4231	0,86026	0,95149
44	50,4553	8,0151	27,8700	9,7257	0,80995	0,9244
45	61,8106	8,8713	31,3644	10,1642	0,90786	0,93245
46	9,8335	3,5384	11,9408	4,7533	0,67067	0,91057
47	10,8286	3,7131	13,1333	4,9876	0,67968	0,90686
48	2,3998	1,7480	5,5574	2,0812	0,84415	0,8913
49	50,5138	8,0197	26,5257	9,0395	0,88664	0,95149
50	5,2094	2,5754	8,7198	3,1545	0,89191	0,89447
51	11,2968	3,7926	12,9329	4,5648	0,92372	0,91469
52	13,4040	4,1312	14,9027	5,8566	0,57187	0,8876
53	0,1171	0,3861	1,0265	0,5410	0,5	1
54	0,4683	0,7721	3,5045	1,6230	0,26633	0,66667
55	4,3900	2,3642	8,1772	3,2907	0,72879	0,87209
56	47,8213	7,8031	28,7790	10,8656	0,59994	0,92369
57	1,8145	1,5200	4,8144	2,0529	0,74077	0,93939
58	25,3447	5,6807	19,6827	7,0660	0,80426	0,92423
59	2,0487	1,6151	5,2983	2,0529	0,78033	0,90909
60	12,4090	3,9749	14,6436	5,2339	0,74375	0,86531
61	37,9878	6,9547	23,9890	7,8022	0,97937	0,92847
62	17,8525	4,7677	15,7531	5,3718	0,91188	0,94136
63	7,0825	3,0029	10,3718	3,7869	0,75733	0,87365
64	0,0585	0,2730	0,6843	0,3422	1	1
65	0,5853	0,8633	3,0206	1,3029	0,53577	0,8
66	16,5648	4,5925	16,5548	6,1824	0,60079	0,87752
67	0,0585	0,2730	0,6843	0,3422	1	1
68	31,4321	6,3262	21,4765	7,3741	0,93278	0,93717
69	23,8228	5,5075	19,5754	7,0328	0,71354	0,92081
70	1,0536	1,1582	3,5632	1,4107	0,81943	0,85714
71	5,2094	2,5754	9,2866	3,2907	0,79541	0,8599
72	0,0585	0,2730	0,6843	0,3422	1	1
73	0,1171	0,3861	1,3686	0,6843	0,37796	0,66667
74	4,8582	2,4871	8,1772	3,2907	0,68435	0,92737
75	38,3975	6,9921	32,3079	9,9928	0,59382	0,7619

76	9,0141	3,3878	11,3982	4,4414	0,71922	0,93051
77	267,9631	18,4711	66,6342	23,8291	0,61363	0,94363
78	52,6210	8,1853	30,3724	10,5402	0,76827	0,88703
79	0,8780	1,0573	3,4215	1,4107	0,62955	0,78947
80	7,9605	3,1836	11,2565	4,3616	0,69411	0,86901
81	0,1171	0,3861	1,0265	0,5410	0,5	1
82	14,1649	4,2468	15,3866	5,6480	0,67251	0,89299
83	3,2193	2,0246	6,7256	2,5259	0,80193	0,86614
84	21,9498	5,2865	18,0064	5,8915	0,87345	0,9375
85	74,3366	9,7287	42,9287	14,4048	0,5487	0,81358
86	7,2581	3,0399	10,0883	3,7869	0,79208	0,91852
87	7,2581	3,0399	10,2301	4,0047	0,64952	0,91852
88	3,8632	2,2178	7,4929	3,0314	0,67632	0,90411
89	7,1410	3,0153	10,9144	4,5003	0,51417	0,87143
90	1,2292	1,2510	3,9054	1,6230	0,75852	0,85714
91	5,2680	2,5899	8,3776	3,0603	0,80501	0,91371
92	1,4048	1,3374	4,1888	1,8896	0,62968	0,92308
93	8,7214	3,3323	11,6230	4,1129	0,75973	0,88427
94	9,4238	3,4639	11,8234	4,5648	0,71733	0,90704
95	11,2383	3,7827	12,6494	4,7717	0,77561	0,92754
96	6,2045	2,8107	9,2036	3,3611	0,79865	0,90987
97	7,3166	3,0522	11,3982	4,6222	0,49768	0,86806
98	4,7997	2,4721	8,3776	3,1452	0,6592	0,88172
99	3,6290	2,1496	7,5516	2,8214	0,71877	0,84932
100	15,1015	4,3849	14,7853	5,3116	0,72916	0,92639
101	11,2383	3,7827	12,7911	4,5003	0,8649	0,91211
102	12,5260	3,9936	13,4754	5,0518	0,65349	0,92641
103	30,1444	6,1952	20,7092	6,9280	0,85469	0,94843
104	12,2919	3,9561	13,4167	4,9876	0,7679	0,92715
105	23,2375	5,4394	18,6077	7,2176	0,65416	0,92218
106	11,9407	3,8991	13,5585	4,7717	0,91248	0,9148
107	5,0338	2,5317	8,5780	3,4892	0,61058	0,90052
108	3,4534	2,0969	7,2094	2,9133	0,71827	0,88722
109	21,8327	5,2724	25,6167	8,8298	0,38404	0,73281
110	7,7263	3,1365	11,4569	4,4479	0,56942	0,86557
111	6,9654	2,9780	9,9709	3,9011	0,71508	0,92969
112	6,3215	2,8370	9,4871	3,4640	0,8393	0,91915
113	5,5021	2,6468	10,5135	4,2321	0,55171	0,81385
114	10,8871	3,7232	12,9673	5,0864	0,58257	0,89209
115	24,3496	5,5680	22,4786	7,7909	0,59068	0,86039
116	7,6678	3,1246	11,3395	4,0556	0,67771	0,85065

117	14,0479	4,2292	14,7610	5,5170	0,68287	0,90056
118	6,9069	2,9655	10,1714	3,8253	0,70252	0,8839
119	16,2721	4,5517	16,0122	5,6480	0,70537	0,89968
120	33,8320	6,5632	22,4786	8,0423	0,82043	0,93376
121	14,9259	4,3594	16,3544	5,5170	0,70381	0,86149
122	6,7313	2,9275	9,8879	3,8253	0,65649	0,89147
123	11,4724	3,8219	13,3094	4,8689	0,74346	0,88488
124	2,5754	1,8108	5,6991	2,1639	0,84093	0,91667
125	6,5557	2,8891	9,5215	3,5226	0,8085	0,88538
126	6,5557	2,8891	9,6045	3,5966	0,80781	0,89243
127	7,3166	3,0522	9,8049	3,4640	0,91808	0,91575
128	6,3801	2,8502	10,1714	3,6290	0,74993	0,86508
129	1,2292	1,2510	3,8467	1,6230	0,64613	0,93333
130	10,6530	3,6829	12,7324	4,4414	0,83323	0,89435
131	2,1657	1,6606	9,9466	3,6851	0,25767	0,56489
132	4,0388	2,2677	7,4929	3,0314	0,70546	0,92
133	0,0585	0,2730	0,6843	0,3422	1	1
134	0,0585	0,2730	0,6843	0,3422	1	1
135	0,7609	0,9843	3,4215	1,4107	0,55406	0,76471
136	5,1509	2,5609	9,2623	3,4215	0,64418	0,867
137	23,8814	5,5142	18,6077	6,2201	0,88656	0,93044
138	6,2630	2,8239	15,9292	4,9818	0,49479	0,54592
139	3,3949	2,0791	6,3834	2,3828	0,87606	0,928
140	5,2094	2,5754	8,8028	3,2549	0,79501	0,90355
141	0,9365	1,0920	3,9884	1,7613	0,43653	0,86486
142	15,4527	4,4356	15,0445	5,1036	0,87658	0,91667
143	3,1608	2,0061	12,2243	3,6930	0,53064	0,54545
144	7,3751	3,0644	10,7383	3,9086	0,6635	0,9
145	11,8236	3,8800	13,1920	4,5456	0,91965	0,89978
146	2,3998	1,7480	5,9826	2,2305	0,81964	0,85417
147	48,6993	7,8744	28,0360	10,4229	0,68308	0,91985
148	2,2243	1,6829	5,2153	1,9506	0,94076	0,89412
149	0,8195	1,0215	4,8144	1,9951	0,29774	0,7
150	32,6028	6,4429	22,7864	7,5931	0,88985	0,92066
151	0,1171	0,3861	1,1682	0,5410	0,5	1
152	9,8335	3,5384	12,1069	4,4611	0,77623	0,92308
153	0,0585	0,2730	0,6843	0,3422	1	1
154	2,9852	1,9496	6,7256	2,4909	0,83786	0,85714
155	6,6142	2,9020	9,4871	3,3611	0,85976	0,91498
156	9,4823	3,4747	11,8821	4,7533	0,6561	0,91268
157	0,1171	0,3861	1,0265	0,5410	0,5	1

158	1,5219	1,3920	4,3892	1,6230	0,8966	0,86667
159	3,9217	2,2346	7,3512	2,6169	0,84248	0,89333
160	43,4313	7,4363	31,7653	9,3451	0,77145	0,87294
161	8,8970	3,3657	11,7991	4,4611	0,6251	0,88116
162	5,5606	2,6608	8,8615	3,1545	0,87366	0,90047
163	2,8681	1,9110	6,0413	2,2824	0,8485	0,90741
164	32,9540	6,4775	22,7621	7,6850	0,80266	0,92069
165	14,4576	4,2905	14,1597	4,9876	0,82743	0,93032
166	0,0585	0,2730	0,6843	0,3422	1	1
167	10,6530	3,6829	12,7081	4,5904	0,708	0,87923
168	0,2341	0,5460	1,3686	0,6843	1	1
169	0,6439	0,9054	4,0471	1,6230	0,57937	0,59459
170	24,1740	5,5479	19,3163	6,7265	0,76344	0,9117
171	0,8195	1,0215	3,2211	1,4107	0,68139	0,84848
172	30,0859	6,1892	21,2862	7,7457	0,66434	0,92529
173	5,9703	2,7571	9,6045	3,6612	0,69945	0,88696
174	18,2622	4,8221	20,4601	6,8856	0,61518	0,75545
175	5,5606	2,6608	9,9122	3,9086	0,51829	0,89202
176	25,3447	5,6807	19,7415	7,1647	0,65947	0,93319
177	0,1171	0,3861	1,1682	0,5410	0,5	1
178	3,6876	2,1668	7,2681	2,8318	0,69096	0,86301
179	15,4527	4,4356	14,6436	5,3718	0,84401	0,95135
180	0,6439	0,9054	3,7049	1,5301	0,49611	0,64706
181	9,5994	3,4960	11,8821	4,4414	0,81708	0,9011
182	8,0190	3,1953	10,6552	3,6930	0,89934	0,91333
183	8,7214	3,3323	11,0804	4,1624	0,84249	0,93711
184	7,1995	3,0277	10,7726	4,3616	0,52355	0,87234
185	8,3702	3,2645	11,3982	4,2871	0,62987	0,88272
186	0,7609	0,9843	2,8789	1,2097	0,86266	0,89655
187	3,0437	1,9686	6,8673	2,3828	0,91231	0,87395
188	17,2086	4,6809	15,8948	6,1205	0,63978	0,953
189	9,8920	3,5489	11,7404	4,4611	0,75843	0,91351
190	0,1171	0,3861	1,0265	0,5410	0,5	1
191	9,6579	3,5067	11,6230	4,3075	0,78875	0,94556
192	0,4683	0,7721	2,1946	1,0265	0,81394	0,94118
193	13,6381	4,1671	13,8763	4,8205	0,83553	0,92277
194	3,2778	2,0429	6,5251	2,4909	0,82937	0,896
195	3,0437	1,9686	6,7256	2,7049	0,65329	0,8254
196	5,0338	2,5317	8,3776	3,3698	0,64315	0,91489
197	73,9269	9,7019	34,9519	12,3387	0,7258	0,92325
198	0,2341	0,5460	1,8525	0,8723	0,4923	0,8

199	0,4683	0,7721	2,3950	1,2097	0,51585	0,84211
200	6,4386	2,8632	9,6288	3,8253	0,62961	0,9322
201	3,2778	2,0429	6,7256	2,6057	0,76164	0,90323
202	7,0239	2,9905	9,6875	3,6930	0,77854	0,92664
203	0,3512	0,6687	2,1946	1,0265	0,62765	0,85714
204	0,4683	0,7721	2,1946	1,0265	0,81394	0,94118
205	7,0825	3,0029	10,0296	3,5966	0,82039	0,90977
206	0,0585	0,2730	0,6843	0,3422	1	1
207	0,2927	0,6104	2,1946	0,9975	0,45701	0,76923
208	10,4774	3,6524	13,1920	4,8988	0,60396	0,87961
209	13,9893	4,2204	15,4453	6,1682	0,49025	0,87386
210	7,6093	3,1126	10,3718	3,7559	0,75821	0,91228
211	26,8080	5,8423	25,4993	9,3106	0,47148	0,80563
212	21,3059	5,2084	18,2311	6,2903	0,72208	0,92976
213	149,0830	13,7775	50,6220	19,0577	0,63603	0,93485
214	10,2432	3,6114	13,1677	5,4368	0,47	0,88608
215	132,5767	12,9924	45,6416	15,3262	0,7833	0,93905
216	41,7339	7,2895	30,2306	10,4705	0,4974	0,84031
217	12,7016	4,0215	14,0180	5,1777	0,69142	0,90229
218	10,0676	3,5803	12,7081	4,6222	0,71409	0,8866
219	26,6910	5,8296	20,5432	8,1328	0,57789	0,93347
220	16,6818	4,6087	16,9556	6,1966	0,6291	0,88235
221	35,1197	6,6870	22,7864	7,7154	0,86446	0,94787
222	19,7841	5,0190	17,1217	6,5814	0,70284	0,93629
223	14,8673	4,3508	15,1275	5,1777	0,84872	0,89912
224	6,2045	2,8107	9,3453	3,3698	0,88871	0,92576
225	31,6077	6,3438	23,5638	8,5091	0,64336	0,90604
226	16,5648	4,5925	16,0709	6,0484	0,69369	0,88854
227	7,7849	3,1483	11,2565	4,3279	0,71881	0,88079
228	3,1608	2,0061	7,0677	2,5259	0,69994	0,83077
229	14,8088	4,3423	14,7023	5,3555	0,75713	0,91667
230	12,6431	4,0122	13,7346	5,1720	0,69105	0,91915
231	5,2680	2,5899	9,4871	3,7009	0,58328	0,85714
232	7,7263	3,1365	10,9974	4,0047	0,7284	0,89492
233	17,0330	4,6569	16,4961	5,6945	0,73816	0,90796
234	15,3941	4,4272	15,8462	5,9754	0,55456	0,89608
235	8,0775	3,2070	10,7139	4,2252	0,64686	0,93559
236	0,2341	0,5460	1,8525	0,7651	0,68139	0,8
237	5,8533	2,7300	9,0032	3,3611	0,76557	0,90498
238	6,9654	2,9780	9,8879	3,7869	0,76617	0,91188
239	16,5648	4,5925	16,3544	6,0629	0,61439	0,9056

240	1,0536	1,1582	3,5045	1,4107	0,80112	0,94737
241	40,9729	7,2228	28,7446	10,4060	0,6099	0,8844
242	64,0934	9,0336	32,2835	11,9041	0,63246	0,92288
243	61,4009	8,8418	41,8293	13,7755	0,44776	0,81098
244	0,7024	0,9457	2,8202	1,2097	0,75	1
245	9,4238	3,4639	12,5320	4,6975	0,7124	0,89197
246	1,0536	1,1582	3,7049	1,7446	0,53848	0,9
247	93,6525	10,9198	58,9510	16,5509	0,541	0,72678
248	1,6389	1,4446	4,7314	1,9951	0,63001	0,875
249	5,8533	2,7300	10,0296	3,7559	0,59136	0,86957
250	16,6818	4,6087	16,0122	5,9311	0,69202	0,91346
251	292,9566	19,3133	68,8288	22,9648	0,7806	0,93762
252	0,5853	0,8633	3,0206	1,3029	0,59167	0,83333
253	29,3249	6,1105	21,0270	7,8022	0,75223	0,91674
254	6,8483	2,9529	9,9709	3,8253	0,6989	0,92126
255	0,2927	0,6104	2,0529	1,0265	0,45701	0,71429
256	0,1171	0,3861	1,1682	0,5410	0,5	1
257	0,0585	0,2730	0,6843	0,3422	1	1
258	1,2877	1,2805	4,1888	1,7613	0,61747	0,89796
259	5,1509	2,5609	9,0619	3,5226	0,59918	0,85854
260	10,0091	3,5699	11,6230	4,1624	0,88253	0,93443
261	6,3215	2,8370	9,9709	3,9011	0,62437	0,90756
262	90,5502	10,7374	48,7452	16,6655	0,43073	0,80197
263	268,1972	18,4792	66,8103	23,6763	0,65073	0,94106
264	4,9168	2,5020	8,2946	3,0603	0,83288	0,87047
265	17,2672	4,6888	16,2470	6,1253	0,78127	0,90352
266	5,9118	2,7436	9,2279	3,4640	0,67717	0,93953
267	84,2287	10,3558	36,8631	12,1764	0,90552	0,92929
268	4,8582	2,4871	10,0883	4,1624	0,37915	0,78302
269	11,9407	3,8991	13,1333	4,7717	0,78465	0,9148
270	6,7898	2,9402	9,6875	3,6930	0,6988	0,9243
271	5,7362	2,7025	9,2036	3,2459	0,8782	0,88688
272	9,3652	3,4531	12,1656	4,5648	0,65459	0,89136
273	7,2581	3,0399	10,3718	3,7559	0,78572	0,87633
274	6,3215	2,8370	9,5458	3,5966	0,69953	0,89256
275	0,0585	0,2730	0,6843	0,3422	1	1
276	8,7799	3,3435	11,8821	4,2252	0,77317	0,9009
277	6,6727	2,9148	9,7462	3,3698	0,93677	0,88716
278	2,3998	1,7480	5,6991	2,2305	0,82241	0,88172
279	6,8483	2,9529	9,6875	3,6851	0,76056	0,91051
280	12,7602	4,0307	13,8176	5,3281	0,68866	0,91213

281	6,0289	2,7706	9,0619	3,3698	0,7764	0,90749
282	4,6826	2,4417	8,3776	3,3698	0,58898	0,88398
283	12,4090	3,9749	13,1920	4,6537	0,83319	0,92174
284	51,5674	8,1029	27,6008	9,5342	0,86819	0,95657
285	31,6662	6,3497	29,8055	9,5312	0,57209	0,80566
286	1,4048	1,3374	4,1888	1,6230	0,76988	0,88889
287	28,7981	6,0553	21,8774	7,9102	0,64857	0,92743
288	42,9045	7,3911	28,9208	8,7633	0,86213	0,85681
289	4,9168	2,5020	8,3776	3,2459	0,75811	0,89362
290	92,1891	10,8342	40,3190	15,1166	0,56096	0,93058
291	12,2334	3,9466	13,8763	5,7355	0,52198	0,92478
292	20,4279	5,1000	17,6055	6,2436	0,72788	0,92819
293	30,4370	6,2252	22,1365	8,4954	0,59284	0,92609
294	12,8187	4,0400	14,1597	4,7717	0,99681	0,90683
295	8,1361	3,2186	10,7139	4,1200	0,69366	0,91148
296	10,7115	3,6930	14,2184	6,1824	0,3735	0,88193
297	68,2492	9,3219	43,2465	14,9629	0,39507	0,75032
298	3,0437	1,9686	6,4421	2,2952	0,9872	0,85246
299	8,4873	3,2873	10,9974	3,8253	0,81082	0,90909
300	14,9259	4,3594	15,1275	5,6480	0,67986	0,92058
301	8,1946	3,2301	10,8557	4,0266	0,7652	0,90032
302	26,2227	5,7782	19,4580	6,6080	0,81926	0,92466
303	0,6439	0,9054	2,7372	1,0820	0,87814	0,81481
304	28,3884	6,0121	21,1100	7,7909	0,68336	0,91596
305	2,7510	1,8716	6,2417	2,4194	0,71181	0,84685
306	5,0924	2,5463	8,3776	3,1545	0,7407	0,89691
307	12,2334	3,9466	15,1032	6,1966	0,47474	0,84959
308	12,2334	3,9466	14,5019	5,6273	0,63329	0,897
309	0,2341	0,5460	1,3686	0,6843	1	1
310	4,4485	2,3799	8,8615	3,7559	0,43687	0,85393
311	31,4321	6,3262	22,6204	8,2187	0,74312	0,89649
312	3,5705	2,1322	6,8673	2,6057	0,83054	0,9037
313	5,3265	2,6042	9,2623	3,7869	0,53793	0,86667
314	14,1064	4,2380	14,7853	5,9754	0,55846	0,93411
315	8,3702	3,2645	10,8557	4,3279	0,63953	0,91961
316	17,4428	4,7126	17,2391	6,0484	0,72718	0,86003
317	4,9168	2,5020	8,1772	2,9532	0,84935	0,91304
318	16,1551	4,5353	15,7875	6,1682	0,65994	0,91089
319	114,9584	12,0983	45,7489	16,1735	0,72973	0,908
320	4,0973	2,2840	8,0355	3,1545	0,67447	0,8642
321	9,8920	3,5489	12,1656	4,1624	0,8885	0,91105

322	19,3744	4,9667	16,6965	5,7099	0,87207	0,92717
323	5,7948	2,7163	9,2623	3,4640	0,73293	0,86463
324	16,6818	4,6087	17,0974	5,6429	0,87891	0,87827
325	22,0669	5,3006	19,0328	6,1824	0,84646	0,90516
326	9,8335	3,5384	11,9064	4,3075	0,91538	0,94118
327	1,0536	1,1582	3,5632	1,5491	0,78673	0,85714
328	16,2721	4,5517	17,6055	6,8814	0,5312	0,89677
329	22,5351	5,3565	18,6320	7,1647	0,62203	0,9322
330	10,1262	3,5907	12,3660	4,9876	0,55785	0,91293
331	2,0487	1,6151	5,3570	1,9506	0,90689	0,875
332	203,1673	16,0836	56,8293	20,9718	0,66391	0,94526
333	5,9703	2,7571	9,4871	3,5966	0,62496	0,89474
334	23,9984	5,5277	19,7758	7,3860	0,66148	0,90408
335	34,0075	6,5803	23,1042	8,2258	0,85693	0,9071
336	16,0965	4,5271	16,2126	5,7711	0,6957	0,87025
337	5,2680	2,5899	10,2301	3,9901	0,51655	0,78603
338	26,9251	5,8551	19,8589	6,4420	0,91314	0,92
339	110,2758	11,8494	44,0826	15,8371	0,57306	0,92127
340	2,5169	1,7901	5,6991	2,2824	0,72217	0,90526
341	57,7719	8,5766	37,9827	10,3157	0,83348	0,85307
342	2,2828	1,7049	5,3570	2,0529	0,91573	0,89655
343	5,0924	2,5463	8,8615	3,6851	0,56466	0,89691
344	52,2698	8,1579	30,3967	11,2857	0,64013	0,9043
345	9,4823	3,4747	12,0238	4,4611	0,68051	0,90503
346	44,4264	7,5210	26,2666	8,9777	0,78936	0,93704
347	3,8046	2,2010	7,2094	2,6169	0,87084	0,90909
348	5,2680	2,5899	8,8028	3,4386	0,7098	0,90452
349	2,1072	1,6380	5,3570	2,0671	0,71146	0,9
350	26,8666	5,8487	21,3105	8,5229	0,51503	0,91984
351	18,3793	4,8375	16,9212	6,3505	0,74825	0,91147
352	0,9951	1,1256	3,7049	1,5301	0,64394	0,85
353	6,1459	2,7974	9,2866	3,4215	0,85106	0,92105
354	8,1361	3,2186	11,1148	4,1765	0,68332	0,87697
355	6,3215	2,8370	10,5135	4,2252	0,47741	0,87449
356	3,6876	2,1668	7,2925	3,0314	0,6291	0,92647
357	19,8426	5,0264	19,1746	7,2581	0,63148	0,86923
358	56,4256	8,4760	29,7468	10,3440	0,73461	0,92293
359	12,5260	3,9936	13,5929	5,0518	0,74212	0,90295
360	31,4906	6,3321	22,0535	7,6507	0,80876	0,91731
361	0,8195	1,0215	3,3628	1,4107	0,63981	0,84848
362	6,2045	2,8107	9,1449	3,2907	0,93682	0,92982

363	15,1015	4,3849	15,1275	5,9064	0,66683	0,93989
364	115,3681	12,1199	47,1519	18,0157	0,47726	0,90475
365	6,2045	2,8107	9,6045	3,7009	0,73546	0,86885
366	0,9365	1,0920	3,7636	1,6230	0,53206	0,78049
367	20,6035	5,1218	19,7171	6,7785	0,69123	0,86275
368	2,8096	1,8914	6,1830	2,4909	0,74935	0,90566
369	3,3364	2,0611	6,6669	2,4909	0,88677	0,92683
370	0,1756	0,4728	1,5103	0,7651	0,33333	1
371	33,7149	6,5519	22,1365	7,3741	0,8698	0,94118
372	0,0585	0,2730	0,6843	0,3422	1	1
373	122,2164	12,4744	44,2243	15,9494	0,70629	0,92594
374	4,2729	2,3325	8,7198	3,9011	0,42277	0,87425
375	0,6439	0,9054	2,7372	1,0820	0,87814	0,81481
376	93,7110	10,9232	38,8229	13,3832	0,71075	0,94846
377	5,9703	2,7571	9,5458	3,7559	0,68588	0,89083
378	5,1509	2,5609	8,3776	3,0314	0,86511	0,89796
379	3,6290	2,1496	7,4099	2,8318	0,74398	0,86111
380	6,7898	2,9402	9,8292	3,8253	0,67649	0,928
381	52,5624	8,1807	28,6859	10,6699	0,7038	0,94676
382	7,7263	3,1365	11,4813	4,8689	0,52906	0,89189
383	11,8822	3,8896	13,0503	4,5904	0,90395	0,91236
384	3,5120	2,1146	6,7256	2,6057	0,73542	0,89552
385	18,7305	4,8835	16,8625	6,1966	0,72248	0,92219
386	0,5853	0,8633	2,8789	1,3686	0,5206	0,8
387	21,0718	5,1797	29,6051	10,1064	0,29906	0,63943
388	0,0585	0,2730	0,6843	0,3422	1	1
389	4,2729	2,3325	8,2602	3,0983	0,94321	0,86391
390	26,1642	5,7718	19,9419	6,7222	0,8966	0,9207
391	0,0585	0,2730	0,6843	0,3422	1	1
392	3,6876	2,1668	8,2359	3,1545	0,52333	0,78261
393	17,3257	4,6968	16,0709	5,6636	0,7818	0,9279
394	6,1459	2,7974	10,0296	4,0047	0,48661	0,88983
395	2,2243	1,6829	5,6991	2,0812	0,83778	0,85393
396	0,7609	0,9843	3,2211	1,3029	0,70607	0,8125
397	105,7687	11,6047	41,0863	14,4939	0,66908	0,92241
398	9,6579	3,5067	13,9006	5,9311	0,35658	0,89431
399	55,6061	8,4143	29,6881	10,3355	0,78809	0,91876
400	4,7412	2,4570	8,8028	3,6290	0,56539	0,85263
401	74,7464	9,7555	34,5855	12,4708	0,71441	0,94105
402	22,9449	5,4050	19,6584	7,3582	0,61027	0,90846
403	0,1756	0,4728	1,5103	0,7651	0,33333	1

404	30,0859	6,1892	21,7113	8,1112	0,64851	0,9228
405	18,9061	4,9063	17,4638	6,4420	0,72057	0,90223
406	15,1600	4,3934	15,3866	5,4368	0,65591	0,87205
407	4,6826	2,4417	8,6611	3,0983	0,72096	0,83333
408	6,7313	2,9275	9,7462	3,5966	0,81277	0,90196
409	6,7898	2,9402	10,0296	3,5226	0,80467	0,86567
410	10,3603	3,6320	12,3660	4,4414	0,82593	0,93158
411	10,3018	3,6217	12,3660	4,8689	0,6332	0,92147
412	19,9011	5,0338	17,7229	6,5098	0,75712	0,91398
413	0,3512	0,6687	2,1946	0,8723	0,88976	0,8
414	5,6192	2,6748	8,9445	3,4386	0,76351	0,90995
415	7,6093	3,1126	12,0238	4,2871	0,67856	0,83067
416	4,3900	2,3642	8,2015	3,3611	0,54717	0,94937
417	6,5557	2,8891	9,6875	3,7792	0,67705	0,90688
418	9,1311	3,4097	11,7647	4,2321	0,83305	0,90962
419	9,9506	3,5594	12,2729	4,5456	0,67694	0,96045
420	21,1303	5,1869	24,1894	7,8806	0,48708	0,74051
421	0,6439	0,9054	2,6785	1,2097	0,72883	0,95652
422	17,7354	4,7520	16,0122	5,7355	0,78528	0,92661
423	26,4568	5,8040	21,0857	7,1933	0,78895	0,88976
424	10,5944	3,6728	13,4754	4,9345	0,53609	0,85782
425	6,2045	2,8107	10,1471	3,8253	0,57144	0,8249
426	9,6579	3,5067	11,7404	4,4149	0,74128	0,92437
427	22,5937	5,3635	17,6642	5,9852	0,89756	0,94146
428	11,5895	3,8414	13,1090	4,5904	0,81223	0,89391
429	4,1558	2,3003	7,9768	3,1545	0,74077	0,87117
430	20,7791	5,1436	17,4051	5,9754	0,89765	0,94415
431	5,2680	2,5899	8,6611	3,2549	0,83538	0,89109
432	7,1995	3,0277	9,9466	3,8253	0,6421	0,91111
433	7,2581	3,0399	10,1714	4,1200	0,66007	0,92537
434	4,0973	2,2840	7,4099	2,9233	0,76371	0,88608
435	1,2877	1,2805	4,1888	1,6230	0,86239	0,88
436	54,7867	8,3520	31,4818	11,5776	0,67854	0,87599
437	4,3900	2,3642	7,7520	2,8318	0,82218	0,88235
438	25,0520	5,6478	19,3750	7,0536	0,77654	0,91845
439	4,2144	2,3164	8,1772	2,8214	0,99032	0,85207
440	5,2094	2,5754	10,0883	4,4414	0,37524	0,85577
441	129,1818	12,8250	45,0403	14,5182	0,87642	0,93795
442	0,1756	0,4728	1,8525	0,8723	0,37009	0,66667
443	2,5169	1,7901	6,2417	2,7585	0,51795	0,85149
444	6,7898	2,9402	10,5722	4,5456	0,5292	0,86245

445	12,6431	4,0122	14,4189	5,0344	0,65998	0,88344
446	11,9407	3,8991	13,5585	5,0344	0,78249	0,90265
447	12,7016	4,0215	13,3094	4,6975	0,86308	0,91368
448	23,5302	5,4735	23,6124	8,5810	0,52072	0,76644
449	38,5146	7,0027	25,6410	9,2443	0,61103	0,87152
450	9,7750	3,5279	12,8255	4,8988	0,51446	0,8883
451	11,2383	3,7827	12,9086	4,8928	0,70583	0,90566
452	5,6777	2,6887	9,0032	3,5966	0,64358	0,91943
453	126,7235	12,7023	54,3026	19,0777	0,60898	0,84786
454	8,4873	3,2873	11,3395	4,6474	0,58344	0,91195
455	46,1824	7,6682	26,4670	8,6625	0,95287	0,93539
456	0,1171	0,3861	1,0265	0,5410	0,5	1
457	36,1147	6,7811	23,1386	8,0423	0,8485	0,92021
458	7,5507	3,1006	10,3718	3,7869	0,8262	0,9021
459	17,2086	4,6809	16,0709	5,4368	0,78212	0,89908
460	9,0141	3,3878	12,0238	4,6975	0,62135	0,87749
461	24,8179	5,6213	18,9154	6,7395	0,78055	0,93702
462	5,7948	2,7163	9,0032	3,2907	0,85984	0,9
463	15,5112	4,4440	15,1275	5,2840	0,81704	0,91379
464	5,8533	2,7300	8,8615	3,2907	0,83492	0,90909
465	49,3431	7,9263	33,6764	11,4121	0,4961	0,81567
466	13,6967	4,1760	14,3015	5,3116	0,83078	0,90698
467	15,3356	4,4188	16,2126	5,7355	0,74114	0,87479
468	8,4287	3,2759	11,9651	4,9876	0,5607	0,90282
469	0,3512	0,6687	2,3363	1,0820	0,4471	0,85714
470	8,1361	3,2186	10,8557	3,9086	0,78372	0,90554
471	8,6043	3,3099	11,2565	4,4414	0,57826	0,89634
472	12,9357	4,0584	14,9858	5,6480	0,63291	0,87873
473	3,3364	2,0611	6,6669	2,4194	0,89129	0,912
474	3,6290	2,1496	7,6933	3,2907	0,54251	0,86111
475	31,5492	6,3380	23,9059	9,0589	0,58785	0,89908
476	35,2367	6,6981	24,3898	9,3451	0,6687	0,90594
477	39,4511	7,0874	28,6960	9,9312	0,58543	0,83005
478	8,8385	3,3546	12,1656	4,5197	0,66185	0,8604
479	8,6043	3,3099	11,5400	4,1765	0,75655	0,88554
480	10,3603	3,6320	12,3660	4,5003	0,74662	0,89169
481	20,7206	5,1364	16,8969	5,9311	0,82132	0,93775
482	10,5944	3,6728	12,3660	4,6537	0,74553	0,90727
483	6,7898	2,9402	9,6875	3,6930	0,76419	0,9243
484	5,2094	2,5754	8,7198	3,4640	0,64146	0,89
485	10,5359	3,6626	12,7081	4,7533	0,70023	0,89776

486	5,5021	2,6468	10,8313	3,8253	0,81401	0,76113
487	27,6275	5,9310	23,2803	9,4355	0,39235	0,89057
488	5,3850	2,6185	9,3453	3,2549	0,7651	0,85185
489	108,9880	11,7800	69,0879	21,7863	0,37458	0,63723
490	4,6826	2,4417	7,9524	2,8318	0,96291	0,87912
491	211,1277	16,3956	56,2381	18,0999	0,90116	0,96521
492	10,9456	3,7332	12,3073	4,5003	0,78616	0,92804
493	7,8434	3,1601	10,3131	3,6930	0,77547	0,93056
494	8,5458	3,2986	11,7404	4,6726	0,62822	0,87425
495	0,0585	0,2730	0,6843	0,3422	1	1
496	20,8962	5,1581	18,0651	6,7482	0,6746	0,92848
497	5,5606	2,6608	8,6611	3,2907	0,72237	0,92683
498	19,3158	4,9592	16,6965	5,8915	0,77894	0,93089
499	25,8715	5,7394	20,1180	6,8814	0,75305	0,9104
500	0,6439	0,9054	2,6785	1,2097	0,72883	0,95652
501	9,5994	3,4960	11,7404	4,5197	0,68068	0,9162
502	13,2284	4,1040	14,1010	4,9876	0,73369	0,92057
503	24,6423	5,6014	19,4337	6,8130	0,68679	0,92022
504	5,3850	2,6185	8,5193	3,0314	0,91099	0,9064
505	2,8096	1,8914	7,5516	3,0314	0,48409	0,72727
506	4,5070	2,3955	7,7520	2,9133	0,81299	0,89535
507	0,4097	0,7223	2,1946	1,0820	0,51661	0,93333
508	11,4724	3,8219	13,0746	4,5456	0,94407	0,91589
509	5,2094	2,5754	8,8028	3,7636	0,59753	0,92228
510	25,9886	5,7524	19,7171	6,5143	0,90428	0,92116
511	90,1990	10,7166	40,6855	12,5620	0,9129	0,88032
512	49,5187	7,9404	27,7283	9,3451	0,76513	0,93688
513	16,6233	4,6006	15,3866	5,3116	0,80862	0,92358
514	7,0239	2,9905	10,8557	3,7559	0,72402	0,83624
515	0,1171	0,3861	1,1682	0,5410	0,5	1
516	5,6192	2,6748	9,8879	4,0047	0,48109	0,85714
517	6,3801	2,8502	9,4041	3,6930	0,64255	0,91597
518	6,2045	2,8107	9,6875	3,4640	0,83337	0,87967
519	17,6769	4,7441	17,6886	6,3321	0,60237	0,88824
520	7,6678	3,1246	10,6552	4,1342	0,68234	0,93238
521	2,8681	1,9110	6,5838	2,7585	0,50905	0,88288
522	13,4040	4,1312	14,2771	5,3061	0,70412	0,90335
523	39,2755	7,0716	23,4707	7,8508	0,89772	0,95789
524	15,9209	4,5023	16,4961	5,8516	0,69526	0,88889
525	3,6290	2,1496	7,0677	2,5718	0,82477	0,86111
526	8,3702	3,2645	11,1148	4,0047	0,77069	0,88545

527	2,1657	1,6606	7,8350	3,2907	0,26062	0,71845
528	5,4436	2,6327	9,0619	3,5966	0,63869	0,89423
529	5,6777	2,6887	8,8028	3,4386	0,79246	0,92823
530	5,6777	2,6887	9,0032	3,0983	0,87713	0,89401
531	6,4386	2,8632	9,7462	3,5226	0,85321	0,86614
532	61,4594	8,8460	32,5083	12,2912	0,58014	0,91743
533	56,9524	8,5155	29,5220	10,0629	0,91322	0,92799
534	0,5853	0,8633	2,5368	1,0820	0,75342	0,90909
535	0,7609	0,9843	2,8789	1,2097	0,86266	0,89655
536	39,1584	7,0610	25,5580	8,5229	0,73336	0,8926
537	16,5648	4,5925	15,8118	5,4583	0,79735	0,90997
538	6,1459	2,7974	9,1449	3,4386	0,88424	0,91703
539	9,6579	3,5067	11,6817	4,3616	0,77382	0,91667
540	16,5062	4,5844	16,4961	6,1966	0,60078	0,89524
541	178,4079	15,0717	51,9176	17,4362	0,78822	0,95354
542	15,0429	4,3764	16,0122	6,3919	0,54333	0,90813
543	5,5606	2,6608	9,1449	3,2907	0,77511	0,87156
544	7,4922	3,0886	10,5722	4,2252	0,5829	0,91429
545	2,3413	1,7266	5,4157	2,0671	0,86597	0,88889
546	8,9555	3,3768	11,1978	4,1342	0,7499	0,92169
547	4,5070	2,3955	8,2359	2,9233	0,85515	0,84153
548	25,9886	5,7524	20,1423	6,7091	0,91564	0,91546
549	1,7560	1,4953	4,6727	1,8896	0,80604	0,92308
550	34,5929	6,6366	23,8472	8,3983	0,68994	0,90023
551	9,3652	3,4531	12,3073	4,7656	0,52746	0,88398
552	18,4964	4,8529	19,1746	6,0629	0,92308	0,83377
553	24,6423	5,6014	19,3993	6,8771	0,72388	0,92325
554	48,7578	7,8791	28,0603	9,1072	0,92896	0,91038
555	5,2680	2,5899	8,6611	3,2459	0,78968	0,90452
556	11,8236	3,8800	13,6759	4,6537	0,88381	0,8821
557	7,9605	3,1836	10,3718	3,9011	0,77962	0,91892
558	30,6126	6,2432	22,0535	7,6888	0,889	0,89708
559	15,1600	4,3934	16,8726	7,0536	0,37815	0,87352
560	9,5408	3,4854	11,5400	4,4414	0,749	0,9209
561	30,7882	6,2611	21,9604	7,5969	0,74292	0,93262
562	23,0034	5,4119	19,7171	7,4726	0,65681	0,89318
563	2,8681	1,9110	6,1243	2,2824	0,8389	0,93333
564	15,2185	4,4019	15,2692	5,2227	0,77496	0,92035
565	5,2680	2,5899	8,5193	3,2907	0,78099	0,89552
566	9,0726	3,3988	12,7081	5,1777	0,54554	0,89337
567	4,6241	2,4264	8,3189	3,5226	0,48748	0,92398

568	0,1756	0,4728	1,6520	0,7651	0,33333	1
569	2,4584	1,7692	6,0413	2,2952	0,82704	0,85714
570	93,4183	10,9061	38,7257	12,8591	0,83557	0,93333
571	47,0604	7,7407	28,6960	10,9407	0,54485	0,92044
572	3,1608	2,0061	6,7256	2,6169	0,80325	0,87097
573	15,6868	4,4691	16,9799	7,3582	0,47488	0,91468
574	9,3652	3,4531	11,3982	4,0266	0,9035	0,91168
575	60,0546	8,7444	32,0244	12,1499	0,56817	0,90837
576	6,8483	2,9529	9,8292	3,4640	0,86038	0,9
577	17,7940	4,7598	17,4638	6,8814	0,52702	0,91154
578	4,3900	2,3642	7,8350	2,9532	0,81051	0,91463
579	58,0060	8,5939	31,0324	10,9327	0,65622	0,89887
580	2,5754	1,8108	6,6669	2,7049	0,45479	0,88
581	25,5788	5,7068	19,3750	6,6080	0,87489	0,91903
582	10,9456	3,7332	12,7081	4,4414	0,75301	0,89688
583	57,1865	8,5330	31,6722	12,1836	0,46846	0,94671
584	7,2581	3,0399	10,3131	3,7869	0,70222	0,89855
585	9,1897	3,4206	11,4813	4,0266	0,84225	0,91545
586	77,2633	9,9184	35,6949	11,9164	0,75104	0,91826
587	101,3202	11,3580	44,4390	16,1735	0,62263	0,86658
588	6,0874	2,7840	9,1449	3,2907	0,87138	0,92035
589	54,1428	8,3028	41,6876	11,4633	0,66476	0,77019
590	12,4090	3,9749	14,0180	5,3718	0,67381	0,91775
591	10,2432	3,6114	12,5664	4,8988	0,64286	0,88384
592	16,6233	4,6006	16,4374	6,2810	0,57384	0,9088
593	7,7849	3,1483	10,6552	3,7792	0,88679	0,89262
594	43,8996	7,4763	27,4348	10,7382	0,51944	0,91912
595	7,4337	3,0765	10,2301	3,8253	0,78271	0,89123
596	140,8884	13,3935	48,8526	16,8471	0,73214	0,94115
597	42,6704	7,3709	29,2629	10,2702	0,63329	0,85413
598	21,1889	5,1941	17,6055	5,9064	0,89744	0,92347
599	9,8335	3,5384	12,8499	4,6975	0,60228	0,88189
600	6,0874	2,7840	10,1714	4,3075	0,56553	0,87029
601	125,2016	12,6258	44,6981	14,6166	0,82965	0,94291
602	1,4633	1,3650	4,3892	1,6230	0,82172	0,84746
603	8,7214	3,3323	10,8557	4,1624	0,71595	0,92835
604	6,7313	2,9275	9,9466	3,7869	0,68723	0,88123
605	7,4337	3,0765	10,8313	4,1765	0,69815	0,87889
606	2,3998	1,7480	8,2359	2,7049	0,77429	0,656
607	5,7948	2,7163	9,2866	3,5966	0,63804	0,91667
608	4,6826	2,4417	8,2359	3,0603	0,72681	0,86486

609	37,9878	6,9547	24,8150	8,1148	0,84745	0,91926
610	45,8312	7,6390	25,3575	8,6861	0,8708	0,94794
611	67,7224	9,2858	34,1603	10,6945	0,80951	0,88795
612	30,2029	6,2013	21,2862	7,8097	0,67942	0,92722
613	67,9566	9,3019	42,9388	15,1050	0,39666	0,83857
614	7,0825	3,0029	10,5722	4,4611	0,47583	0,87365
615	20,0767	5,0559	17,7817	6,5143	0,74729	0,89908
616	17,3842	4,7047	16,0122	5,9064	0,75046	0,91667
617	6,4386	2,8632	9,6875	3,8253	0,72981	0,89431
618	0,5268	0,8190	2,7372	1,0820	0,71964	0,75
619	11,2968	3,7926	12,6494	4,7717	0,77497	0,92124
620	4,5070	2,3955	7,9768	3,0603	0,65619	0,92216
621	10,0676	3,5803	13,2507	4,6537	0,73824	0,85786
622	6,7313	2,9275	9,8879	3,8253	0,70145	0,89844
623	7,2581	3,0399	10,2301	4,1342	0,66847	0,90511
624	8,7799	3,3435	11,1978	3,8253	0,88621	0,90634
625	22,0669	5,3006	19,2920	7,6850	0,51265	0,90625
626	18,2622	4,8221	16,2126	5,8516	0,76318	0,93134
627	7,0239	2,9905	9,8879	3,6930	0,7294	0,89888
628	10,1847	3,6011	12,3073	4,5648	0,69374	0,89922
629	82,1215	10,2255	35,7880	13,2359	0,65585	0,93347
630	18,3793	4,8375	16,5791	6,1062	0,69473	0,91147
631	13,8723	4,2027	14,0180	4,9876	0,79841	0,92398
632	146,9173	13,6770	48,6865	16,7914	0,79123	0,93709
633	18,8476	4,8987	18,5490	6,0629	0,89381	0,88705
634	57,3036	8,5417	30,3724	11,3271	0,60751	0,94316
635	16,3892	4,5681	15,1032	5,3116	0,82497	0,93178
636	12,9943	4,0675	14,8440	5,3116	0,66017	0,90244
637	1,3463	1,3092	4,0471	1,5491	0,88361	0,88462
638	21,3059	5,2084	20,2010	7,7759	0,51897	0,8835
639	7,6093	3,1126	11,7991	4,3616	0,59161	0,81761
640	6,0874	2,7840	8,9202	3,1452	0,90368	0,9163
641	5,6192	2,6748	9,4628	3,6290	0,59328	0,83117
642	2,7510	1,8716	5,6991	2,1639	0,87216	0,93069
643	13,2284	4,1040	13,8763	5,3061	0,72195	0,92434
644	9,3652	3,4531	12,0825	4,5456	0,67288	0,87912
645	4,5070	2,3955	8,2359	2,9532	0,78903	0,88
646	26,8666	5,8487	19,7171	6,6916	0,84155	0,92261
647	3,8046	2,2010	7,0677	2,7049	0,76146	0,90909
648	2,0487	1,6151	5,1565	2,0812	0,77767	0,92105
649	14,8673	4,3508	19,1746	5,9064	0,7158	0,77914

650	15,9795	4,5106	16,4131	5,8266	0,70523	0,89362
651	23,0034	5,4119	19,1402	6,6080	0,80221	0,93349
652	0,5853	0,8633	2,5368	1,0820	0,80929	0,90909
653	28,0372	5,9748	28,2121	9,4881	0,431	0,8195
654	11,5895	3,8414	12,7081	4,7717	0,72827	0,92093
655	16,9160	4,6409	15,4696	5,5223	0,83439	0,93528
656	2,8681	1,9110	6,5251	2,6169	0,75305	0,88288
657	26,1642	5,7718	20,7436	8,2400	0,52635	0,91786
658	5,0924	2,5463	8,6611	3,4892	0,71197	0,90625
659	10,5944	3,6728	13,6516	4,8387	0,6524	0,85377
660	0,9951	1,1256	3,3628	1,4107	0,79166	0,91892
661	5,4436	2,6327	8,3189	3,0983	0,88793	0,93939
662	2,9852	1,9496	8,2602	3,4640	0,29708	0,82927
663	11,4724	3,8219	13,0503	4,6975	0,75792	0,91589
664	13,6381	4,1671	13,7346	4,6537	0,93969	0,91913
665	23,1790	5,4325	19,5997	7,6392	0,56544	0,91561
666	33,1296	6,4948	23,1629	8,4988	0,70178	0,91512
667	10,8286	3,7131	12,9086	4,8988	0,65434	0,89806
668	34,8270	6,6591	23,5051	8,9908	0,558	0,92679
669	8,2531	3,2416	10,7139	3,9086	0,76652	0,92157
670	5,6777	2,6887	9,0032	3,2907	0,80207	0,88991
671	9,3067	3,4423	11,3395	4,1129	0,83391	0,91908
672	15,9795	4,5106	15,9879	6,2810	0,62507	0,90099
673	0,1171	0,3861	1,0265	0,5410	0,5	1
674	22,1839	5,3146	18,0651	6,3873	0,76994	0,92665
675	9,1311	3,4097	12,2486	4,6537	0,67169	0,89398
676	10,3018	3,6217	12,7911	4,9876	0,72133	0,90722
677	9,5994	3,4960	11,7404	4,2321	0,82248	0,88649
678	228,2778	17,0485	64,0488	22,6232	0,59793	0,92122
679	8,6629	3,3211	10,6552	3,9011	0,85754	0,94569
680	2,1072	1,6380	5,4157	2,0671	0,77131	0,87805
681	9,1897	3,4206	11,7404	4,3616	0,67755	0,89459
682	22,1254	5,3076	18,4072	6,4420	0,71904	0,91304
683	25,7544	5,7264	20,2840	6,9322	0,81132	0,89888
684	37,6366	6,9225	24,8150	8,8066	0,802	0,9127
685	7,4922	3,0886	10,0296	3,6851	0,8993	0,91756
686	24,8764	5,6279	18,9741	6,6433	0,89758	0,92998
687	21,5986	5,2441	19,4580	7,1933	0,61118	0,90775
688	29,6176	6,1409	20,3427	7,1647	0,82364	0,94934
689	36,9927	6,8630	31,9657	10,3355	0,61976	0,77451
690	7,8434	3,1601	10,7139	3,6930	0,88583	0,88449

691	2,8681	1,9110	6,7256	2,6057	0,65171	0,82353
692	9,8335	3,5384	14,2428	5,4583	0,4877	0,84848
693	3,9802	2,2512	8,1772	3,2549	0,58714	0,85535
694	26,8666	5,8487	27,3517	7,8359	0,74443	0,77929
695	5,7362	2,7025	9,8292	4,2803	0,47394	0,89498
696	2,3413	1,7266	5,5574	2,1639	0,79032	0,86957
697	21,8913	5,2795	23,4464	8,5810	0,46431	0,74651
698	4,0973	2,2840	7,7520	2,9133	0,77394	0,8589
699	19,8426	5,0264	16,5204	5,7099	0,87013	0,94825
700	10,9456	3,7332	12,5077	4,7656	0,75369	0,91443
701	6,6142	2,9020	9,4871	3,4640	0,83556	0,92245
702	14,4576	4,2905	14,6436	4,9876	0,92129	0,91481
703	7,0825	3,0029	11,2221	4,3279	0,55567	0,91321
704	7,1995	3,0277	9,9466	3,4215	0,94337	0,9011
705	23,2375	5,4394	20,0006	7,9102	0,48148	0,89113
706	12,2919	3,9561	16,0709	4,9876	0,8804	0,80306
707	17,9110	4,7755	16,7208	6,0484	0,64178	0,91892
708	5,9703	2,7571	9,3453	3,4640	0,75866	0,91071
709	19,6085	4,9966	17,0630	6,2903	0,66161	0,94901
710	10,3603	3,6320	12,7081	4,5197	0,77384	0,89169
711	21,8913	5,2795	27,7283	9,6320	0,35524	0,66726
712	5,7948	2,7163	8,6611	3,2459	0,83935	0,93396
713	22,2425	5,3217	19,1746	6,8814	0,58299	0,9257
714	10,0091	3,5699	17,4395	5,6636	0,55271	0,70954
715	1,2877	1,2805	4,1888	1,8896	0,57551	0,89796
716	5,4436	2,6327	9,1206	3,4892	0,57442	0,86916
717	17,8525	4,7677	16,1539	5,4744	0,92393	0,91867
718	7,3166	3,0522	10,3718	4,0047	0,6457	0,90909
719	9,7750	3,5279	11,9064	4,6537	0,67846	0,9435
720	13,5211	4,1492	14,3015	5,3718	0,66061	0,92216
721	34,0075	6,5803	25,2158	8,0532	0,74114	0,87698
722	6,7313	2,9275	9,7462	3,6930	0,72636	0,90196
723	26,0471	5,7588	20,3427	6,7785	0,83565	0,91095
724	14,1064	4,2380	15,6701	5,9311	0,51451	0,88278
725	0,9365	1,0920	3,3628	1,4107	0,76105	0,91429
726	15,3356	4,4188	17,1217	6,8814	0,45437	0,87043
727	15,6283	4,4608	14,7853	5,3281	0,84402	0,93357
728	3,9802	2,2512	7,6346	2,9233	0,67539	0,90667
729	19,3744	4,9667	17,1460	6,2013	0,66369	0,93635
730	4,3314	2,3484	8,3189	3,2549	0,72487	0,88095
731	12,1748	3,9372	14,2771	5,9064	0,49459	0,89079

732 5,	7948 2,7163	9,1449 3,29	07 0,84438 0,90411
--------	-------------	-------------	--------------------

Tabla 2. Distribución de Frecuencias para Diámetro del área proyectada concentrado de pirolusita bruto

	Límite	Límite			Frecuencia	Frecuencia	Frecuencia
Clase	Inferior	Superior	Punto Medio	Frecuencia	Relativa	Acumulada	Rel. Acum.
	menor o igual	0,0		0	0,0000	0	0,0000
1	0,0	1,81818	0,909091	112	0,1530	112	0,1530
2	1,81818	3,63636	2,72727	292	0,3989	404	0,5519
3	3,63636	5,45455	4,54545	178	0,2432	582	0,7951
4	5,45455	7,27273	6,36364	76	0,1038	658	0,8989
5	7,27273	9,09091	8,18182	37	0,0505	695	0,9495
6	9,09091	10,9091	10,0	13	0,0178	708	0,9672
7	10,9091	12,7273	11,8182	11	0,0150	719	0,9822
8	12,7273	14,5455	13,6364	5	0,0068	724	0,9891
9	14,5455	16,3636	15,4545	3	0,0041	727	0,9932
10	16,3636	18,1818	17,2727	2	0,0027	729	0,9959
11	18,1818	20,0	19,0909	3	0,0041	732	1,0000
	mayor de	20,0		0	0,0000	732	1,0000

Media = 4.05961 Desviación Estándar = 2.77124

Tabla 3. Distribución de Frecuencias para la Circularidad de las partículas concentrado de pirolusita bruto

	Límite	Límite			Frecuencia	Frecuencia	Frecuencia
Clase	Inferior	Superior	Punto Medio	Frecuencia	Relativa	Acumulada	Rel. Acum.
	menor o igual	0,0		0	0,0000	0	0,0000
1	0,0	0,0909091	0,0454545	0	0,0000	0	0,0000
2	0,0909091	0,181818	0,136364	0	0,0000	0	0,0000
3	0,181818	0,272727	0,227273	2	0,0027	2	0,0027
4	0,272727	0,363636	0,318182	6	0,0082	8	0,0109
5	0,363636	0,454545	0,409091	12	0,0164	20	0,0273
6	0,454545	0,545455	0,5	16	0,0219	36	0,0492
7	0,545455	0,636364	0,590909	18	0,0246	54	0,0738
8	0,636364	0,727273	0,681818	51	0,0697	105	0,1434
9	0,727273	0,818182	0,772727	210	0,2869	315	0,4303
10	0,818182	0,909091	0,863636	274	0,3743	589	0,8046
11	0,909091	1,0	0,954545	143	0,1954	732	1,0000
	mayor de	1,0		0	0,0000	732	1,0000

Media = 0,817907 Desviación Estándar = 0,12685

	Límite	Límite			Frecuencia	Frecuencia	Frecuencia
Clase	Inferior	Superior	Punto Medio	Frecuencia	Relativa	Acumulada	Rel. Acum.
	menor o igual	2,0		0	0,0000	0	0,0000
1	2,0	2,7	2,35	2	0,0024	2	0,0024
2	2,7	3,4	3,05	198	0,2374	200	0,2398
3	3,4	4,1	3,75	301	0,3609	501	0,6007
4	4,1	4,8	4,45	184	0,2206	685	0,8213
5	4,8	5,5	5,15	81	0,0971	766	0,9185
6	5,5	6,2	5,85	46	0,0552	812	0,9736
7	6,2	6,9	6,55	18	0,0216	830	0,9952
8	6,9	7,6	7,25	2	0,0024	832	0,9976
9	7,6	8,3	7,95	2	0,0024	834	1,0000
10	8,3	9,0	8,65	0	0,0000	834	1,0000
11	9,0	9,7	9,35	0	0,0000	834	1,0000
	mayor de	9,7		0	0,0000	834	1,0000

Tabla 4. Distribución de Frecuencias para el Diámetro del área proyectada fracción granulométrica de partida -5 +3 mm

Media = 4,0716 Desviación Estándar = 0,8768

Tabla 5. Distribución de Frecuencias para la Circularidad de las partículas fracción granulométrica de partida -5 +3 mm

	Límite	Límite			Frecuencia	Frecuencia	Frecuencia
Clase	Inferior	Superior	Punto Medio	Frecuencia	Relativa	Acumulada	Rel. Acum.
	menor o igual	0,26		0	0,0000	0	0,0000
1	0,26	0,327273	0,293636	1	0,0012	1	0,0012
2	0,327273	0,394545	0,360909	3	0,0036	4	0,0048
3	0,394545	0,461818	0,428182	6	0,0072	10	0,0120
4	0,461818	0,529091	0,495455	17	0,0204	27	0,0324
5	0,529091	0,596364	0,562727	7	0,0084	34	0,0408
6	0,596364	0,663636	0,63	15	0,0180	49	0,0588
7	0,663636	0,730909	0,697273	73	0,0875	122	0,1463
8	0,730909	0,798182	0,764545	210	0,2518	332	0,3981
9	0,798182	0,865455	0,831818	373	0,4472	705	0,8453
10	0,865455	0,932727	0,899091	127	0,1523	832	0,9976
11	0,932727	1,0	0,966364	2	0,0024	834	1,0000
	mayor de	1,0		0	0,0000	834	1,0000

Media = 0,795639 Desviación Estándar = 0,0888453

	Límite	Límite			Frecuencia	Frecuencia	Frecuencia
Clase	Inferior	Superior	Punto Medio	Frecuencia	Relativa	Acumulada	Rel. Acum.
	menor o igual	0,1		0	0,0000	0	0,0000
1	0,1	0,675	0,3875	76	0,0396	76	0,0396
2	0,675	1,25	0,9625	309	0,1609	385	0,2004
3	1,25	1,825	1,5375	842	0,4383	1227	0,6387
4	1,825	2,4	2,1125	376	0,1957	1603	0,8345
5	2,4	2,975	2,6875	162	0,0843	1765	0,9188
6	2,975	3,55	3,2625	79	0,0411	1844	0,9599
7	3,55	4,125	3,8375	38	0,0198	1882	0,9797
8	4,125	4,7	4,4125	21	0,0109	1903	0,9906
9	4,7	5,275	4,9875	8	0,0042	1911	0,9948
10	5,275	5,85	5,5625	8	0,0042	1919	0,9990
11	5,85	6,425	6,1375	1	0,0005	1920	0,9995
12	6,425	7,0	6,7125	1	0,0005	1921	1,0000
	mayor de	7,0		0	0,0000	1921	1,0000

Tabla 6. Distribución de Frecuencias para el Diámetro del área proyectada fracción granulométrica > 1,5 mm

Media = 1,79096 Desviación Estándar = 0,809702

Tabla 7. Distribución de Frecuencias	para la	Circularidad	de las	partículas	fracción
granulométrica > 1,5 mm					

	Límite	Límite			Frecuencia	Frecuencia	Frecuencia
Clase	Inferior	Superior	Punto Medio	Frecuencia	Relativa	Acumulada	Rel. Acum.
	menor o igual	0,3		0	0,0000	0	0,0000
1	0,3	0,358333	0,329167	1	0,0005	1	0,0005
2	0,358333	0,416667	0,3875	0	0,0000	1	0,0005
3	0,416667	0,475	0,445833	3	0,0016	4	0,0021
4	0,475	0,533333	0,504167	2	0,0010	6	0,0031
5	0,533333	0,591667	0,5625	12	0,0062	18	0,0094
6	0,591667	0,65	0,620833	15	0,0078	33	0,0172
7	0,65	0,708333	0,679167	41	0,0213	74	0,0385
8	0,708333	0,766667	0,7375	100	0,0521	174	0,0906
9	0,766667	0,825	0,795833	310	0,1614	484	0,2520
10	0,825	0,883333	0,854167	520	0,2707	1004	0,5226
11	0,883333	0,941667	0,9125	566	0,2946	1570	0,8173
12	0,941667	1,0	0,970833	248	0,1291	1818	0,9464
	mayor de	1,0		0	0,0000	1818	0,9464

Media = 0,869722 Desviación Estándar = 0,0825438