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Gradient image smoothing for metal artifact reduction (GISMAR) 

in computed tomography  

Yakdiel Rodríguez-Gallo1, Rubén Orozco-Morales2, Marlen Pérez-Díaz2 

Abstract  

Metal artifacts can impair accurate diagnosis, and degrade the image quality and diagnostic value of CT-

slices. In this work we propose a novel gradient image smoothing for metal artifact reduction (GISMAR) 

algorithm for image quality improvement in patients with hip implants, dental fillings, DBS implants and 

permanent seed implants. Using Image Smoothing via L0 Gradient Minimization method, a global 

thresholding method, and the principle of NMAR method, the authors developed a new MAR method that 

does not depend on access to raw projection data. To validate the authors’ approach, 2D-CT data from 

twenty-two patients with different metal implants were used and processed by GISMAR and three more 

well- known algorithms. In order to evaluate metal artifact reduction, mean CT number (HU and SD) was 

calculated as well as a subjective analysis with three expert observers. Image quality on images was 

compared using the non-parametric Friedman-ANOVA test. We conclude that GISMAR method can 

efficiently reduce metal artifacts using CT-slice, does not introduce new artifacts, while preserving  

anatomical structures. 

Keywords: Computed tomography; metal artifact reduction; implants; image quality 
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Abbreviations and acronyms 

CPU Central Processing Unit 

CT Computed Tomography 

FBP Filtered Back Projection 

FP Forward Projection 

FSNMAR Frequency Split Normalized Metal Artifact Reduction 

GE General Electric 

GISMAR Gradient Image Smoothing for Metal Artifact Reduction 

GLP Gaussian Low-Pass 
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HU Hounsfield Units 

L0GM L0 Gradient Minimization 

LI Linear Interpolation 

MAR Metal Artifact Reduction 

NMAR Normalized Metal Artifact Reduction 

SD Standard Deviation 

 

INTRODUCTION 

Artifacts due to metallic implants are common in Computed Tomography (CT) images as a result of beam-

hardening, scatter effects and photon-starvation [1–3]. Over the last four decades, a lot of algorithms have 

been developed to reduce metal artifacts. These metal artifact reduction (MAR) algorithms can be divided 

mainly into five classes: Acquisition Improvement, Physics-based Pre-processing, Projection Completion, 

Iterative Reconstruction and Image-based Approaches [4]. In order to improve the acquisition process, dual-

energy protocols have been proposed [5, 6]. A number of MAR techniques have been developed based on 

the assumption that the projections associated with the metal objects are completely missing or corrupted 

and are useless for CT-slice reconstruction. The incomplete data are completed by interpolations among 

the assumed useful measured data. Linear [7–9] or polynomial [10, 11] interpolation techniques can be used 

for this purpose.  

Other algorithms use a normalization step [12–14] to improve projection completion processes. 

Additionally, some iterative reconstruction methods have been developed to reduce metal artifacts [15–19]. 

On the other hand, a small proportion of methods prefer to handle the artifacts in the image domain [20]. 

In these methods, artifacts are reduced after the image has been reconstructed. 

The purpose of this study is present the preliminary results obtained by a new MAR method (GISMAR). 

The novelty of this new MAR is that eliminate the need to access to the raw projection data from the CT 

scanner; working directly on two-dimensional CT-slices. Consequently, this method could be implemented 

in a dedicated software for using in workstations and personal laptops. GISMAR method uses Image 

Smoothing via L0 Gradient Minimization (L0GM) method [21], Isoentropic based on Global Thresholding 

method [22, 23] and the principle of normalized metal artifact reduction (NMAR) method [12] to interpolate 

in the sinogram domain. Image quality was compared with four well-known algorithms: filtered back 

projection (FBP), linear interpolation (LI), NMAR and frequency split normalized metal artifact reduction 

(FSNMAR). The advantages of our method are demonstrated using clinical dataset. 
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MATERIALS AND METHODS 

Metal artifact reduction approaches 

In this study, three well-known MAR methods were selected to compare the performance of GISMAR 

method. The first algorithm selected was LI [24]. Although, this method reduces the artifacts, new ones are 

induced. NMAR algorithm proposed by Meyer et al. [12] was the second algorithm chosen. To maintain 

the size and the edges of the metal implant, both methods, LI and NMAR, reinsert the metal image from 

the originally reconstructed image in the final corrected image. In addition, to improve the edge information 

of surrounding bone structures the application of FSNMAR algorithm was introduced by Meyer et al [13], 

being the third algorithm selected in this research. The thresholds for the segmentation of metal were set 

according to the paper [13] for LI, NMAR and FSNMAR in this work. For full details of these algorithms, 

please refer to corresponding literature. 

Algorithm developed 

The GISMAR algorithm uses various steps of data segmentation. A flow diagram for the GISMAR 

algorithm is shown in Figure 1. 
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Fig. 1. Flow diagram showing the steps of the gradient image smoothing for metal artifact reduction 

(GISMAR) algorithm. 

As a first step, the artifacts were automatically segmented from the FBP reconstructed CT-slice (IOriginal) 

using the previously published Isoentropic based Global Thresholding method by Bianconi et al. [22, 25], 

for automatic thresholding-based segmentation. Methods based on entropy, like the Isoentropic, has the 

advantage of being able to discriminate between types of objects according to their information content. In 

MAR, the most widely implemented segmentation method employs global thresholding, whereby a global 

threshold is used to distinguish the metal from the non-metal objects in the image. However, several studies 

have claimed that minor segmentation errors may have significant detrimental effects on the overall 

performance of the MAR method [26]. New studies on this topic will be published in the future by GISMAR 

authors.  

When the Isoentropic method is applied to the IOriginal, threshold (Thr1) is obtained. This threshold is used 

to obtain the dark artifact mask (IDAM), as is shown in Figure 1. This threshold is multiplied by a factor 

(ThF1) and Thr2 is obtained. This new threshold was used to get the bright artifact mask (IBAM). Both IDAM 

and IBAM are binary images. These images were yielded to segment the dark and bright artifacts in IOriginal, 

and recover the lost structures. Subsequently, Thr3 is gotten multiplying Thr2 by a factor ThF2 (Thr1 < 

Thr2 < Thr3). In this case, Thr3 is used to segment the metallic implants in the original image, obtaining 

the metal image (IMetal). It should be noted that Thr1 is calculated automatically through Isoentropic method 

for each CT-slice, and it will vary mainly depending on the anatomical structure analyzed according to its 

position in the human body. ThF1 factor can be varied between 1.6 and 1.8; and ThF2 between 3.9 and 4.2. 

It is recommended to use a ThF1 value of 1.7 and ThF2 of 4.1 for implants as presented in this paper. These 

were found experimentally.  

Once a metal image is obtained (IMetal), a strong smoothing by a Gaussian low-pass (GLP) filter is used to 

obtain the Gaussian filtered image (IGaussian). A GLP with size of 200 x 200 pixels and a SD of σ ≈ 25 pixels 

was used. IGaussian contains the local average intensity level, so, when it is combined with IDAM and IBAM, the 

local average intensity level is recovered, obtaining the dark artifact image (IDAI) and bright artifact image 

(IBAI). The modified original image 1 (IMOrig1) is the result of adding the image IDAI to IOriginal. From the result 

of this mathematical operation is subtracted the image IBAI, obtaining the modified original image 2 (IMOrig2). 

IMOrig2 contains all the information from IOriginal.  IMOrig2 was obtained, using the following equation:  

𝐼𝑀𝑂𝑟𝑖𝑔2 = 𝐼𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + (𝐼𝐷𝐴𝑀 ∗ 𝐼𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛) − (𝐼𝐵𝐴𝑀 ∗ 𝐼𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛) (1) 

In order to obtain a prior image (IPrior) (Fig. 1), a L0GM [21] is applied to the IMOrig2. This method was 

selected based on the mechanism for discretely counting spatial changes, because it can remove low-

Page 4 of 19AUTHOR SUBMITTED MANUSCRIPT - BPEX2-100060.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

 

amplitude structures and globally preserve and enhance outgoing edges, even if they are boundaries of very 

narrow objects. Additionally, it has been used due to its characteristics and benefits in medical imaging [27, 

28].  

In L0GM, λ is the smoothing parameter, which controls the degree of smoothing, and κ controls the 

iterations rate. Five iterations are generally performed in the algorithm to obtain a good IPrior, with κ = 1.8. 

We recommend using a λ value of 1 x 10-5 in dataset as used in this work. These iterations are carried out 

because IPrior cannot have artifacts. The goal is to discriminate artifacts from real structures in the original 

image so that we can replace artifact contaminated regions of the original image with tissue values by 

interpolation; and the discrimination is used to reduce metal artifacts [29, 30]. A high λ value is applied in 

order to achieve a deep smoothing, eliminating the artifacts that exist in IMOrig, and thus obtaining an optimal 

IPrior without artifacts and with the most tissue information from the IOriginal.  

Sinograms from IOriginal, IPrior and IMetal were obtained using forward projection (FP). FP was carried out 

using parallel-beam geometry. Following the method developed by [12], the original sinogram is 

normalized (SNorm) by dividing it by the sinogram of the IPrior pixelwise. Moreover, all values from the SNorm 

that lie within the metal trace (IMetal) are replaced in each row by linear interpolation (See Kalender et al. 

[24] for further details). Afterwards, the corrected sinogram (SCorr) is obtained by denormalization of the 

interpolated (SInter). 

Finally, the reconstructed image (IRec) is obtained using FBP with linear interpolation and a ramp filter from 

SCorr. This image is then processed using L0GM again with two iterations (κ = 1.8 and λ = 9 x 10-5). In this 

step, the parameters of the L0GM were selected to achieve a soft smoothing, and bring out the edges and 

fine anatomical structures, as well as eliminate some remaining streak artifacts due to noise, obtaining the 

final image (IFinal). 

Patients 

The authors had complete control of the data in the article submitted for publication. The images used from 

a GE Medical Systems CT were employed in previous research [31]. Additionally, the other dataset was 

approved by Institutional Review Board in the hospital where it was obtained. Informed consent was 

obtained from all these patients. The study was performed by using the DICOM images from CT datasets 

obtained in 22 adults (mean age 61.5 years; range 21–84 years). The main inclusion criterion was the 

presence of a metallic implant in the examination area. The only exclusion criterion was to have an age 

under 18 years. The mean patient’s weight was 65.8 ± 10 kg (range 39.2–97.5 kg). Only the image data of 

the patients was used in the study, keeping all other patient’s information anonymous. 

Image acquisition 
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The CT datasets were obtained for this research from two different CT scanners: GE Medical Systems CT 

and a Siemens SOMATOM Sensation 16 scanner CT using helical scanning geometry. Patients with dental 

fillings were scanned on a GE CT with a filter type “Body filter”, convolution kernel “standard”, Slice 

Thickness 2.5 mm, Tube current 250 mA and kilovolt peak 120 kV; in the case of patients with hip implants 

with “Body filter”, convolution kernel “standard”, Slice Thickness 2.5 mm, tube current 440 mA and 

kilovolt peak 120 kV; and of patients with seed implants, a filter type “Body filter”, convolution kernel 

“B30s”, Slice Thickness 2.5 mm, Tube current 139 mA and kilovolt peak 130 kV. Others patients with 

dental fillings were scanned on a Siemens SOMATOM Sensation 16 scanner CT and it utilized a filter type 

“WEDGE_2”,  convolution kernel “'H31s”, Tube current 226 mA and kilovolt peak 120 kV. On the other 

hand, patients with DBS implants were scanned on a Siemens SOMATOM Sensation 16 scanner CT, being 

used a filter type “WEDGE_2”, convolution kernel “'H31s”, Tube current 256 mA and kilovolt peak 140 

kV. The matrix size of the reconstructed images was 512 x 512 pixels in both scanners. Corresponding 

pixel sizes were 1 mm X 1 mm for GE CT and 0.776 mm X 0.776 mm for Siemens SOMATOM Sensation.  

The CT datasets were taken from different anatomical regions and had the following distribution: three seed 

implants, three hip implants and three dental implants acquired from GE CT; eleven dental fillings and two 

DBS implants from Siemens SOMATOM Sensation. 

Image analysis 

Clinical images obtained by using FBP, LI, NMAR, FSNMAR and GISMAR were independently evaluated 

by three board-certified Radiologists, each with more than ten years of experience, and blind to all patient 

data and image parameters. Images were visualised under the same conditions; displayed in random order. 

Images were displayed using a 23” LED backlight monitor with a 1920 x 1080 resolution. Observers viewed 

the monitors from an approximate viewing distance of 2-2.5 screen heights. Experiments were conducted 

in dimmed ambient light (less than 25 lux). 

Statistical Analysis 

In the objective comparison, in order to assess the quantitative capability of the GISMAR algorithm for 

metallic artifact reduction, two regions of interest (ROIs) were drawn on the original and the processed CT 

images. CT numbers (HU) and standard deviations (SD) were measured by two radiologists within the 2 

ROIs selected by them, one strongly affected and the second weakly affected by metallic artifacts. The 

position of ROI is dependent on each image. Three examples of this ROI location are shown in figure 2.  

The size (4 mm2) and shape (circular) of the ROIs were maintained for all measurements. This size was 

not so small as to be affected by pixel variability. Figure 2 shows some examples indicated by red circles. 
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Fig. 2. Influence of the MAR algorithms on image quality. The ROI for assessment of the most severe 

artifact was placed at the location of the brightest streak artifact and in a segment weakly affected by 

artifacts. Left column: Patient I with dental filling, Middle column: Patient II with permanent seeds, Right 

column: Patient III with total hip implant. (a) The original artifact CT-slice (FBP) and the corrected 

images using the various MAR approaches: (b) LI, (c) NMAR, (d) FSNMAR and (e) GISMAR. Arrow 1 

indicates the metal artifacts. Arrow 2 points at the recovery of edges and fine anatomical details. Window 

level: 300 HU; window width: 2,500 HU. 

The diagnostic image quality was scored on CT-slices on a scale from 1 to 5 (1, severely reduced image 

quality, non-diagnostic; 2, markedly reduced image quality, with impaired diagnostic interpretability; 3, 

acceptable image quality and diagnostic interpretability; 4, good image quality, with high diagnostic 

confidence; 5, excellent image quality, with full diagnostic interpretability). 

All numeric values were reported as the mean ± SD. For quantitative image quality assessment, paired and 

unpaired-t tests were used for comparison of ROI measurements between the algorithms, which were used 

because the Kolmogorov-Smirnov and Shapiro-Wilk tests revealed a distribution of data that was normal. 

In order to compare subjective image quality scores of the datasets, non-parametric Friedman-ANOVA was 

performed. P-values were adjusted for multiple comparisons using the Bonferroni-Holm method. With the 

purpose of assessing interobserver agreement, Cohen’s kappa was used. The κ values of 0.01–0.20 were 

considered to indicate slight agreement, 0.21–0.40 for fair agreement, 0.41–0.60 for moderate agreement, 

0.61–0.80 for substantial agreement and 0.81–1.00 for almost perfect agreement. 

Statistical analyses were performed with statistical software (SPSS, version 22.0; IBM, Chicago, IL, USA). 

For all statistical analyses, p-values less than 0.05 were considered to represent statistically significant 

differences. 

RESULTS 

Quantitative image quality assessment 

A comparison of HU values among the algorithms are shown in Table 1.  

Table 1. Quantitative image quality analyses. Comparison between images reconstructed by FBP, LI, 

NMAR, FSNMAR and GISMAR algorithms. 

 
Total hips Permanent seeds Dental Fillings DBS 

Algorithms Segment 

with artifacts 

(HU) 

Segment 

without 

artifacts 

(HU) 

Segment 

with 

artifacts 

(HU) 

Segment 

without 

artifacts 

(HU) 

Segment 

with 

artifacts 

(HU) 

Segment 

without 

artifacts 

(HU) 

Segment 

with 

artifacts 

(HU) 

Segment 

without 

artifacts 
(HU) 
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FBP 73.1 ± 12.5 51.9 ± 11.0 99.1 ± 12.5 70.1 ± 9.3 90.5 ± 9.8 62.1 ± 8.7 32.3± 11.3 32.3± 9.2 

LI 68.7 ± 9.7 49.5 ± 12.1 83.8 ± 9.2 67.8 ± 10.1 71.3 ± 10.4 60.8± 8.9 22.8± 8.1 34.5± 7.2 

NMAR 50.1 ± 9.3 49.2 ± 11.6 70.7 ± 9.4 67.2 ± 9.7 63.9 ± 10.5 61.3± 8.7 18.6± 6.2 32.6± 6.8 

FSNMAR 50.2 ± 9.3 50.1 ± 9.9 70.5 ± 90.8 68.4 ± 8.2 62.4 ± 9.9 60.9± 8.2 18.4± 6.0 32.6± 6.9 

GISMAR 49.8. ± 9.8 49.9 ± 9.5 69.5± 9.1 68.3 ± 7.8 61.6± 10.0 61.2 ± 8.3 19.0± 6.4 32.7± 6.6 

For the ROI segments affected by metallic artifacts of any type, the mean HU values reconstructed by LI, 

NMAR, FSNMAR and GISMAR were better than those images reconstructed by FBP (p < 0.001 for all 

values). Specifically, for hip implants, there were significant differences among LI and all MAR algorithms 

(p < 0.001) due to the presence of some artifacts. The LI method does not reduce all artifacts and in some 

cases introduces new ones. Mean HU value showed a better performance of GISMAR method, but without 

significant differences with respect to the rest of MAR algorithms (p> 0.05). 

For permanent seeds and total dental fillings, GISMAR presented good results, but there were not 

significant differences respect to FSNMAR (p =0.120 and p=0.213, respectively). For segments not affected 

by artifacts, mean HU values did not show significant differences (0.105≤ p ≤0.347) among all 

reconstructed images.  

In the case of patients with DBS implants, the worst algorithm was LI. There were no significant differences 

between NMAR, FSNMAR and GISMAR in areas not affected by artifacts. In areas close to the implant, 

FSNMAR was the best performing, although its differences were not significant regarding NMAR and 

GISMAR (p =0.115 and p=0.354, respectively). 

Qualitative image quality assessment 

Interobserver agreement for all assessments of image quality is shown in Table 2. The κ values for the three 

observers were from 0.638 to 0.8.24 for image quality in all the study. The worst agreement was between 

observer 1 and 2 with κ = 0.655 (p < 0.001) in presence of artifacts caused by permanent seeds. 

Table 2. Comparison of interobserver agreement for all image quality assessment. 

Total hip Observer 2 Observer 3 

κ P κ P 

Observer 1 0.801 <0.001 0.725 <0.001 

Observer 2     0.705 <0.001 
     

Permanent seed Observer 2 Observer 3 

κ P κ P 

Observer 1 0.655 <0.001 0.729 <0.001 

Observer 2     0.678 <0.001 
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Dental Fillings Observer 2 Observer 3 

κ P κ P 

Observer 1 0.721 <0.001 0.730 <0.001 

Observer 2     0.702 <0.001 

     

DBS implants Observer 2 Observer 3 

 κ P κ P 

Observer 1 0.824 <0.001 0.755 <0.001 

Observer 2     0.762 <0.001 

 

Table 3 shows the image quality among the algorithms. There were significant differences between all 

algorithms and BPF (p < 0.001). LI was the method with the worst result. The FSNMAR and NMAR 

methods had similar performances in all case studies. GISMAR had a similar performance to FSNMAR. 

Their main differences were in the regions close to the implant, where GISMAR had a better performance 

in patients with seed implants and FSNMAR in patients with DBS implants (Fig 6). 

Table 3. Differences in image quality among the algorithms. P-values for pair-wise comparison of the 

different reconstruction techniques using Friedman-ANOVA and adjustment for multiple comparisons 

with the Bonferroni–Holms method. 

Hip implants 

  LI NMAR FSNMAR GISMAR 

FBP 0.003 0.001 0.001 0.001 

LI   0.002 0.018 0.001 

NMAR 
  

0.685 0.465 

FSNMAR       0.505  

Permanent seeds 

  LI NMAR FSNMAR GISMAR 

FBP 0.028 0.015 0.015 0.015 

LI   0.020 0.020 0.020 

NMAR 
  

0.792 0.698 

FSNMAR       0.505 

Dental fillings 

  LI NMAR FSNMAR GISMAR 

FBP 0.004 0.001 0.001 0.001 

LI   0.002 0.001 0.001 

NMAR 
  

0.652 0.425 
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FSNMAR       0.551 

DBS implants 

  LI NMAR FSNMAR GISMAR 

FBP 0.046 0.001 0.001 0.001 

LI   0.001 0.001 0.001 

NMAR 
  

0.701 0.695 

FSNMAR       0.520 

 

In patients with dental fillings, NMAR and FSNMAR algorithms reduced the streak artifacts, however the 

GISMAR algorithm tends to give a better suppression of the around teeth and restores more detail at a small 

distance from the artifacts. In Figure 3 is zoomed the tissues affected by artifacts and the results obtained 

by GISMAR. 

 

Fig. 3. Influence of the GISMAR algorithm on image quality. Reconstructions of a Patient 1 (P1) with 

several dental fillings and Patient 4 (P4) with seed implants. P1-W1 a) and P4-W2 a) were obtained from 

the FBP reconstructed DICOM CT-image; so as P1-W1 b) and P4-W2 b) were obtained from GISMAR. 

P1-W1 c) and P4-W2 c) were a zoom in the tissues affected by artifacts. Soft tissue was recovered and the 

method was able to recover edges and fine anatomical details, which are presented in P1-W1 d) and P4-

W2 d).  Images P1-W1 are displayed with window level 40 HU and window width 280 HU; and images 

P1-W2 with window level -100 HU and window width 400 HU. 

On the other hand, a preliminary investigation was carried out on the advantages of using the final 

smoothing step in other MAR methods (Fig. 4). GISMAR method was able to reduce the artifacts 

efficiently, without its last step, keeping the details of the original image. This is due to the quality of the 

IPrior, achieved with L0GM. However, the final quality was not good because the images were blurred, with 

noise, and the structures were not clearly visible. When the smoothing step was applied in LI, NMAR and 

FSNMAR methods, with the same parameters used in GISMAR, there was a reduction in the blurring of 
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the images and some structures were observed better, which was more evident in FSNMAR method. 

However, some streaks are reintroduced by LI, NMAR and FSNMAR. 

 

Fig. 4. Patient with unilateral total hip replacement. Red arrows are used in the magnified images to mark 

the position where the anatomical details are lost or exist artifacts. White arrows are used to highlight the 
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position where corresponding details are restored or the artifacts are reduced. Using the final smoothing 

step of GISMAR, some slight streaks are reintroduced by LI, NMAR and FSNMAR, but the blurring is 

removed; and bone structures were restored by FSNMAR. GISMAR yields the best correction. Top four 

rows: window level 10 HU and window width 450 HU, bottom four rows: window level 300 HU and 

window width 2500 HU. 

From the expert observer’s point of view, if small metal objects such as permanent seeds were within the 

field of measurement, GISMAR were more susceptible to artifacts reduction than LI, NMAR, FSNMAR 

and FBP. In addition, GISMAR was able to improve image quality in pelvis; and recover the delineation of 

the tissues neighboring the metal hardware (Fig. 4). 

The GISMAR method was developed to work on reconstructed images on axial slice. However, when the 

artifacts have been reduced in all the slices, it is possible to build a 3D volume. Figure 5 shows axial, sagittal 

and coronal slices obtained after the application of GISMAR method in a patient with unilateral total hip 

replacement. 

 

Fig. 5. Example of patient with unilateral total hip replacement. Axial, coronal and sagittal images before 

correction with FBP and GISMAR algorithm are displayed at window level 10 HU, window width 450 

HU; and window level 300 HU, window width 2500 HU. 

Additionally, experiments with GISMAR method were conducted with CT-slices that were severely 

deteriorated to know its performance. This is the case of the patient with DBS implant presented in Fig. 6. 

This dataset was affected by noise, metal artifacts and beam hardening. The experiments showed that 

GISMAR was able to reduce noise and metal artifacts. However, it was not able to recover the structures 

in the vicinity of the implant. LI was the worst performing method. The performance of FSNMAR and 

NMAR algorithms was poor, because new artifacts were introduced. 
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Fig. 6. Patient with DBS implant. Window level: 0 HU; window width: 1000 HU. 

An evaluation on the spatial resolution among MAR methods was carried out. Figure 7 shows the analysis 

performed for the patient dataset with unilateral total hip replacement presented in Fig. 4. The Modulation 

Transfer Function (MTF) [32] was estimated for two different ROI. For ROI a), close to the artifact, the 

area under the MTF curves decreases more than for ROI b), distant from artifact, as consequence of the 

MAR method used. In both cases, the method that had the MTF closest to the uncorrected image was 

GISMAR, and the method that had the worst MTF was LI. 

 

Fig. 7. MTF versus spatial frequency for MAR methods in a patient with unilateral total hip replacement. 

ROI a) close to the artifact. ROI b) distant from artifact. Window level 0 HU, window width 1000 HU. 
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DISCUSSION 

In this paper, a new procedure to reduce metal artifacts was proposed. The core of the GISMAR algorithm 

revolves around the combination of prior image creation and Gaussian smoothing filter application, the 

result of which is then interpolated obtaining the reconstructed image. Finally, this image is smoothed using 

L0GM to improve its quality.  

In presence of high-density objects, such as metals, the effects of beam hardening, scattered radiation, 

photon starvation and noise cause the FBP algorithm to produce reconstructions characterized by artifacts. 

LI was able to improve the overall image quality, but this algorithm still induced artifacts which negatively 

influenced the diagnostic confidence in the assessment. NMAR was able to improve image quality and 

proved to be superior to both FBP and LI. However, it still suffers from loss of details close to metal 

implants and it is dependent on a good prior image with accurate segmentation [12]. On the other hand, 

GISMAR can restore structures between or in the neighborhood metal implants better than or similar to 

FSNMAR. This algorithm is able to recover clear edges and fine anatomical details.  

The addition of the final smoothing step (L0GM method) in all MAR methods improved the delineation of 

the tissues neighboring in the metal hardware (muscles, tendons and joint) and the implant itself. Both 

FSNMAR and GISMAR improved the image quality. More investigations about the application of L0GM 

in MAR methods should be carry out in the future. 

A good prior image is important to perform the normalization process. Parameters selection for obtaining 

a prior image and metal image are usually chosen empirically in some methods [12, 13, 24]. The κ values 

should be close to 2 according to the authors of L0GM, to achieve the best results [21]. GISMAR uses κ = 

1.8. This parameter was varied up to 2%, observing that the differences were not visually perceptible. 

However, in dependence on the body region, the energy spectrum used for the CT acquisition changes. 

Higher values of kVp increases the X-ray penetration and the variation of the whole image contrast. In the 

present study, only three values of kVp were tested. The factors ThF1 and ThF2 were determined with the 

purpose of GISMAR method was scalable and depend on few parameters for its future implementation, but 

they should be experimentally fitted. New studies on the tuning of ThF1 and ThF2 factors with other 

datasets, and from different CT scanners will be carried out in the future.  

The value of λ is also conditioned by the acquisition parameters, mainly the mAs, which essentially 

determine the noise. More iterations could yield an over-smoothing, losing image information. In general 

terms, lower values of mAs imply higher values of λ. This parameter also should be experimentally fitted, 

according to the acquisition protocol used. 
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The GISMAR algorithm makes use of L0GM. This method enhances edges and preserves the tissue 

characteristics, reducing the noise. GISMAR does not perform iterative reconstruction, as these are time 

consuming. The average time needed to obtain the final image was approximately of 50 seconds on an Intel 

Core i5, CPU 1.8-GHz PC. 

The GISMAR algorithm also has advantages for clinical work flow. It has the ability to operate directly on 

DICOM CT-slices, reducing the artifacts and improving image quality. Many MAR algorithms require 

access to raw projection data, but these often cannot be implemented on commercial CT scanners due to 

restrictions. From this algorithm, a dedicated software for using in workstations by radiologists could be 

developed, even for personal laptops.  

Despite the large number of iterative reconstruction algorithms developed in recent years, and the increase 

in computational power of the equipment, even these are not able to significantly reduce metal artifacts. 

Geyer et al [33] describe the currently available algorithms published by some CT manufacturers, observing 

that the results obtained are not yet satisfactory. On the other hand, Sunwoo et al [34] evaluated the 

performance of the metal artifact reduction for orthopedic implants (O-MAR) in patients with intracranial 

metallic implants, concluding that in many cases the reduction of the streak artifacts was not significant. 

The application of hybrid techniques, a combination of iterative reconstruction algorithms and algorithms 

that works in image domain, could be a solution for the reduction of metal artifacts. 

The main limitation of the present contribution is the number of images studied. It would be important to 

increase the sample for a more elaborate evaluation of the algorithm performance, as well as to investigate 

other common sources of streaking artifacts, such as spinal screws. 

In conclusion, the results in this paper show that GISMAR algorithm reduces streak artifacts and restores 

the CT numbers of the tissues surrounding the metal. In the comparison, it was observed that GISMAR had 

a similar performance to FSNMAR algorithm, although in some cases, it was able to recover with more 

precision the details surrounding the implants. In addition, it was found that GISMAR tends to avoid the 

introduction of new artifacts in CT-slices. A clinical study involving more cases is preparing to prove the 

effectiveness of GISMAR. 

Acknowledgements 

The authors would like to thank Professor Dr. Norbert Pelc from Stanford University and Dr. Samuel Mazin 

from RefleXion Medical for provide clinical data. We sincerely thank Armando Alaminos for his 

collaboration. 

Compliance with ethical standards 

Page 16 of 19AUTHOR SUBMITTED MANUSCRIPT - BPEX2-100060.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

 

Yakdiel Rodríguez-Gallo, Rubén Orozco-Morales and Marlen Pérez-Díaz declare that they have no conflict 

of interest. 

The authors state that this work has not received any funding. All procedures performed in studies involving 

human participants were in accordance with the ethical standards of the institutional and/or national 

research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical 

standards. Informed consent was obtained from all individual participants included in the study. 

 

References 

1.  Hamie QM, Kobe AR, Mietzsch L, et al (2018) Prototype metal artefact reduction algorithm in flat 

panel computed tomography - evaluation in patients undergoing transarterial hepatic 

radioembolisation. Eur Radiol 28:265–273. https://doi.org/10.1007/s00330-017-4946-1 

2.  Giantsoudi D, De Man B, Verburg J, et al (2017) Metal artifacts in computed tomography for radiation 

therapy planning: dosimetric effects and impact of metal artifact reduction. Phys Med Biol 62:R49–

R80. https://doi.org/10.1088/1361-6560/aa5293 

3.  Kennedy JA, Israel O, Frenkel A, et al (2007) The reduction of artifacts due to metal hip implants in 

CT-attenuation corrected PET images from hybrid PET/CT scanners. Med Bio Eng Comput 45:553–

562. https://doi.org/10.1007/s11517-007-0188-8 

4.  Gjesteby L, Man BD, Jin Y, et al (2016) Metal Artifact Reduction in CT: Where Are We After Four 

Decades? IEEE Access 4:5826–5849. https://doi.org/10.1109/ACCESS.2016.2608621 

5.  Kuchenbecker S, Faby S, Sawall S, et al (2015) Dual energy CT: how well can pseudo-

monochromatic imaging reduce metal artifacts? Med Phys 42:1023–1036. 

https://doi.org/10.1118/1.4905106 

6.  Bamberg F, Dierks A, Nikolaou K, et al (2011) Metal artifact reduction by dual energy computed 

tomography using monoenergetic extrapolation. Eur Radiol 21:1424–1429. 

https://doi.org/10.1007/s00330-011-2062-1 

7.  Hahn K, Schöndube H, Stierstorfer K, et al (2016) A comparison of linear interpolation models for 

iterative CT reconstruction. Med Phys 43:6455–6473. https://doi.org/10.1118/1.4966134 

8.  Rajwade J, Miller L, Simon D (2012) Partial-data interpolation method for arc handling in a computed 

tomography scanner. Comput Med Imag Grap 36:387–395. 

https://doi.org/10.1016/j.compmedimag.2012.04.004 

9.  Yu H, Zeng K, Bharkhada DK, et al (2007) A Segmentation-Based Method for Metal Artifact 

Reduction. Acad Radiol 14:495–504. https://doi.org/10.1016/j.acra.2006.12.015 

10.  Glover GH, Pelc NJ (1981) An algorithm for the reduction of metal clip artifacts in CT 

reconstructions. Med Phys 8:799–807. https://doi.org/10.1118/1.595032 

11.  Mahnken AH, Raupach R, Wildberger JE, et al (2003) A new algorithm for metal artifact reduction 

in computed tomography: in vitro and in vivo evaluation after total hip replacement. Invest Radiol 

38:769–775. https://doi.org/10.1097/01.rli.0000086495.96457.54 

Page 17 of 19 AUTHOR SUBMITTED MANUSCRIPT - BPEX2-100060.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

 

12.  Meyer E, Raupach R, Lell M, et al (2010) Normalized metal artifact reduction (NMAR) in computed 

tomography. Med Phys 37:5482–5493. https://doi.org/10.1118/1.3484090 

13.  Meyer E, Raupach R, Lell M, et al (2012) Frequency split metal artifact reduction (FSMAR) in 

computed tomography. Med Phys 39:1904–1916. https://doi.org/10.1118/1.3691902 

14.  Lell MM, Meyer E, Schmid M, et al (2013) Frequency split metal artefact reduction in pelvic 

computed tomography. Eur Radiol 23:2137–2145. https://doi.org/10.1007/s00330-013-2809-y 

15.  Wang G, Frei T, Vannier MW (2000) Fast iterative algorithm for metal artifact reduction in X-ray 

CT. Acad Radiol 7:607–614. https://doi.org/10.1016/S1076-6332(00)80576-0 

16.  Zhang H, Wang L, Li L, et al (2016) Iterative metal artifact reduction for x-ray computed tomography 

using unmatched projector/backprojector pairs. Med Phys 43:3019–3033. 

https://doi.org/10.1118/1.4950722 

17.  Brabant L, Pauwels E, Dierick M, et al (2012) A novel beam hardening correction method requiring 

no prior knowledge, incorporated in an iterative reconstruction algorithm. NDT & E Int 51:68–73. 

https://doi.org/10.1016/j.ndteint.2012.07.002 

18.  Dong J, Kondo A, Abe K, Hayakawa Y (2011) Successive iterative restoration applied to streak 

artifact reduction in X-ray CT image of dento-alveolar region. Int J CARS 6:635–640. 

https://doi.org/10.1007/s11548-010-0544-2 

19.  Fang J, Zhang D, Wilcox C, et al (2017) Metal implants on CT: comparison of iterative reconstruction 

algorithms for reduction of metal artifacts with single energy and spectral CT scanning in a phantom 

model. Abdom Radiol 42:742–748. https://doi.org/10.1007/s00261-016-1023-1 

20.  Naranjo V, Lloréns R, Alcañiz M, López-Mir F (2011) Metal artifact reduction in dental CT images 

using polar mathematical morphology. Comput Methods Programs Biomed 102:64–74. 

https://doi.org/10.1016/j.cmpb.2010.11.009 

21.  Xu L, Lu C, Xu Y, Jia J (2011) Image Smoothing via L0 Gradient Minimization. ACM Trans Graph 

30:174:1–174:12. https://doi.org/10.1145/2070781.2024208 

22.  Bianconi F, Fernández A, González E, Ribas F (2007) Texture Classification Through Combination 

of Sequential Colour Texture Classifiers. In: Progress in Pattern Recognition, Image Analysis and 

Applications. pp 231–240 

23.  Bianconi F, Ceccarelli L, Fernández A, Saetta SA (2014) A sequential machine vision procedure for 

assessing paper impurities. Comput Ind 65:325–332. https://doi.org/10.1016/j.compind.2013.12.001 

24.  Kalender WA, Hebel R, Ebersberger J (1987) Reduction of CT artifacts caused by metallic implants. 

Radiol 164:576–577. https://doi.org/10.1148/radiology.164.2.3602406 

25.  Fernández A, Ghita O, González E, et al (2017) Evaluation of robustness against rotation of LBP, 

CCR and ILBP features in granite texture classification. Mach Vis Appl 22:913–926. 

https://doi.org/10.1007/s00138-010-0253-4 

Page 18 of 19AUTHOR SUBMITTED MANUSCRIPT - BPEX2-100060.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

 

26.  Li Y, Bao X, Yin X, et al (2010) Metal artifact reduction in CT based on adaptive steering filter and 

nonlocal sinogram inpainting. In: Biomedical Engineering and Informatics (BMEI), 2010 3rd 

International Conference on. IEEE, pp 380–383 

27.  Liu X, Mei W, Du H (2016) Multimodality medical image fusion algorithm based on gradient 

minimization smoothing filter and pulse coupled neural network. Biom Sig Proces 30:140–148. 

https://doi.org/10.1016/j.bspc.2016.06.013 

28.  Duan Y, Chang H, Huang W, et al (2015) The L0 Regularized Mumford-Shah Model for Bias 

Correction and Segmentation of Medical Images. IEEE Trans Image Process 24:3927–3938. 

https://doi.org/10.1109/TIP.2015.2451957 

29.  Karimi S, Cosman P, Wald C, Martz H (2012) Segmentation of artifacts and anatomy in CT metal 

artifact reduction. Med Phys 39:5857–5868. https://doi.org/10.1118/1.4749931 

30.  Zhang Y, Yan H, Jia X, et al (2013) A hybrid metal artifact reduction algorithm for x-ray CT. Med 

Phys 40:4. https://doi.org/10.1118/1.4794474 

31.  Golden C, Mazin SR, Boas FE, et al (2011) A comparison of four algorithms for metal artifact 

reduction in CT imaging. In: Proc. SPIE. p 79612Y 

32.  Park SK, Schowengerdt, R, Kaczynski M-A (1984) Modulation-transfer-function analysis for 

sampled image systems. Applied optics 23:2572–2582. https://doi.org/10.1364/AO.23.002572 

33.  Geyer LL, Schoepf UJ, Meinel FG, et al (2015) State of the Art: Iterative CT Reconstruction 

Techniques. Radiology 276:339–357. https://doi.org/10.1148/radiol.2015132766 

34.  Sunwoo L, Park S-W, Rhim JH, et al (2018) Metal Artifact Reduction for Orthopedic Implants: Brain 

CT Angiography in Patients with Intracranial Metallic Implants. Journal of Korean Medical Science 

33:. https://doi.org/10.3346/jkms.2018.33.e158 

 

Page 19 of 19 AUTHOR SUBMITTED MANUSCRIPT - BPEX2-100060.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t


