Filiberto Cabrera, YaimaBello Pérez, Rafael EstebanFrias Dominguez, Mabel2018-03-132018-03-132015-07-05https://dspace.uclv.edu.cu/handle/123456789/8899En la clasificación supervisada, la reducción de datos es una tarea importante, especialmente para clasificadores basados en instancias porque a través de ella los tiempos de ejecución se pueden reducir y obtener igual o mejor exactitud en la clasificación. En este trabajo se proponen dos métodos de reducción de datos, un método basado en generación de prototipos y otro basado en selección de prototipos. Ambas propuestas son evaluadas usando varios conjuntos de datos y se comprueba usando técnicas estadísticas, que estos nuevos métodos obtienen una exactitud en la clasificación que supera la alcanzada con métodos clásicos y al mismo tiempo obtienen muy buenas tasas de reducción. Los resultados obtenidos con ambos métodos muestran que la combinación de la teoría de los conjuntos aproximados extendida con la metaheurística PSO aplicada en tareas de reducción de datos puede ser una excelente opción para obtener mejores resultados en la clasificación.In the supervised classification, the reduction of data is an important task, especially for classifiers based on instances because through it the times of execution can decrease and obtain the same or better precision in the classification. In this work, two new methods for solving classification problems based on prototypes is proposed and their performance is evaluated using several datasets. The new methods preserve a classification accuracy that is competitive with that of classical methods but, at the same time, yields very well data reduction rates. The results obtained with both methods show that the combination of the Rough Set Theory extended with the metheuristic PSO applied in tasks of reduction data can be an excellent option to obtain better results in the classification problems.esEste documento es Propiedad Patrimonial de la Universidad Central “Marta Abreu” de Las Villas. Los usuarios podrán hacer uso de esta obra bajo la siguiente licencia: Creative Commons: Atribución-No Comercial-Compartir Igual 4.0 LicenseMétodos de AprendizajePrototiposTeoría de los Conjuntos AproximadosClasificación SupervisadaReducción de DatosClasificadoresTécnicas EstadísticasInteligencia ArtificialAprendizaje AutomáticoBases de DatosEstadísticaInteligencia ArtificialMétodos de aprendizaje basados en prototipos usando la teoría de los conjuntos aproximados extendidaThesis