Enlarging simple ecological models:subspecies, hidden symmetries and thei implications

dc.contributor.authorMartín González, Osmel
dc.contributor.authorPérez Díaz, Noel
dc.contributor.authorCárdenas Ortiz, Rolando Pedro
dc.contributor.authorHorvath, J.E.
dc.contributor.departmentUniversidad Central "Marta Abreu" de Las Villas. Departamento de Físicaen_US
dc.contributor.departmentDepartamento de Astronomía, Instituto de Astronomía, Geofísica y Ciencias Atmosféricas (IAG), USP, Sao Paulo, Brazilen_US
dc.contributor.editorCárdenas Ortiz, Rolando Pedro
dc.contributor.editorMochalov, Vladimir
dc.contributor.editorParra, Oscar
dc.contributor.editorMartín González, Osmel
dc.coverage.spatialSwitzerlanden_US
dc.date.accessioned2019-02-28T21:24:40Z
dc.date.available2019-02-28T21:24:40Z
dc.date.issued2019
dc.description.abstractSome basic principles to enlarge simple ecological models and the role of nonlinearities are discussed. The inclusion of internal groups and the new dynamic possibilities associated with this procedure are considered in the context of the logistic model. According to our results, processes like the success or extinction of a particular group without affecting the global population are not necessarily linked to the impact of environmental changes or the supremacy of a determined group or subspecies. In our case, the uniformity, the success or extinction of a particular group into a global population may be seen as the possibility to achieve or not a typical symmetry-breaking process. Such possibilities arise associated with the degree of nonlinearity contributions and the specificities of the interaction network in the model. Other elements linked with the ecological interaction, the role of symmetries and the phenomenological nature of ecological modelling are also discussed.en_US
dc.identifier.citationCitar según la fuente original: Schmolke A et al (2010) Ecological models supporting environmental decision making: a strategy for the future. Trends Ecol Evol 25(8):479–486 Grimm V et al (2014) Towards better modelling and decision support: documenting model development, testing, and analysis using TRACE. Ecol Model 280:129–139 Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40(1):677–697 Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12(5):361–371 Kreuzer M, Tribsch A, Nyffeler R (2014) Ecological and genetic differentiation of two subspecies of Saussurea alpina in the Western Alps. Alp Bot 124(1):49–58 Gleiser M, Thorarinson J (2006) Prebiotic homochirality as a critical phenomenon. Orig Life Evol Biosph 36(5):501–505 Li R, Bowerman B (2010) Symmetry breaking in biology. Cold Spring Harb Perspect Biol 2(3):a003475 Borile C et al (2012) Spontaneously broken neutral symmetry in an ecological system. Phys Rev Lett 109(3):038102 Sayama H, Kaufman L, Bar-Yam Y (2000) Symmetry breaking and coarsening in spatially distributed evolutionary processes including sexual reproduction and disruptive selection. Phys Rev E 62(5):7065–7069 Price RIA et al (2016) Symmetry breaking in mass-recruiting ants: extent of foraging biases depends on resource quality. Behav Ecol Sociobiol 70(11):1813–1820 Djouadi A (2008) The anatomy of electroweak symmetry breaking: Tome I: The Higgs boson in the Standard Model. Phys Rep 457(1–4):1–216 Gabrielli E et al (2014) Towards completing the standard model: vacuum stability, electroweak symmetry breaking, and dark matter. Phys Rev D 89(1):015017 Kratina P et al (2009) Functional responses modified by predator density. Oecologia 159(2):425–433 Morozov AY (2010) Emergence of Holling type III zooplankton functional response: bringing together field evidence and mathematical modelling. J Theor Biol 265(1):45–54 Millstein RL (2009) Populations as individuals. Biol Theory 4(3):267–273 Patten MA (2015) Subspecies and the philosophy of science. Auk 132(2):481–485 Stein BA et al (2013) Preparing for and managing change: climate adaptation for biodiversity and ecosystems. Front Ecol Environ 11(9):502–510 Longo G, Montévil M (2011) From physics to biology by extending criticality and symmetry breakings. Prog Biophys Mol Biol 106(2):340–347 Goryachev AB, Leda M (2017) Many roads to symmetry breaking: molecular mechanisms and theoretical models of yeast cell polarity. Mol Biol Cell 28(3):370–380en_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-04233-2_3en_US
dc.identifier.urihttps://dspace.uclv.edu.cu/handle/123456789/10832
dc.language.isoen_USen_US
dc.publisherSpringeren_US
dc.rightsEste documento es Propiedad Patrimonial de Springer Nature Switzerland AG y se deposita en este Repositorio solo con fines académicos y exclusivamente para usuarios de la UCLV hasta tanto sea liberado por la editorial Springer Nature Switzerland AG, respetando la legislación vigente en Cuba sobre derecho de Autor y la política de acceso de la mencionada editorial..en_US
dc.rights.holderSpringer Nature Switzerland AGen_US
dc.source.endpage27en_US
dc.source.initialpage19en_US
dc.subjectEcological Modellingen_US
dc.subjectSubspeciesen_US
dc.subjectSymmetryen_US
dc.subjectSymmetry Breakingen_US
dc.subject.otherEarth and Environmental Scienceen_US
dc.subject.otherModeling Natural Environmentsen_US
dc.titleEnlarging simple ecological models:subspecies, hidden symmetries and thei implicationsen_US
dc.typeBook-Chapteren_US

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.33 KB
Formato:
Item-specific license agreed upon to submission
Descripción: