The potential for photosynthesis in hydrothermal vents: a new avenue for life in the universe?
Fecha
2013
Autores
Pérez Díaz, Noel
Cárdenas Ortiz, Rolando Pedro
Martín González, Osmel
Leiva Mora, Michel
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
We perform a quantitative assessment for the potential
for photosynthesis in hydrothermal vents in the deep
ocean. The photosynthetically active radiation in this case is
from geothermal origin: the infrared thermal radiation emitted
by hot water, at temperatures ranging from 473 up to
673 K.We find that at these temperatures the photosynthetic
potential is rather low in these ecosystems for most known
species. However, species which a very high efficiency in
the use of light and which could use infrared photons till
1300 nm, could achieve good rates of photosynthesis in hydrothermal
vents. These organisms might also thrive in deep
hydrothermal vents in other planetary bodies, such as one of
the more astrobiologically promising Jupiter satellites: Europa
Descripción
Palabras clave
Hydrothermal vent, Thermal radiation, Photosynthesis
Citación
Citar según la fuente original:
Avila, D., Cardenas, R., Martin, O.: On the photosynthetic potential in the very early Archean oceans. Orig. Life Evol. Biosph. 43, 67–75 (2013).
Blankenship, R.E.: Molecular Mechanisms of Photosynthesis. Blackwell Sci., Oxford (2002).
Beatty, J.T.: On the natural selection and evolution of the aerobic phototrophic bacteria. Photosynth. Res. 73, 109–114 (2002).
Beatty, J.T., Overmann, J., Lince, M.T., Manske, A.K., Lang, A.S., Blankenship, R.E., Van Dover, C.L., Martinson, T.A., Plumley, F.G.: An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc. Natl. Acad. Sci. USA 102, 9306–9310 (2005).
Chyba, C.F., Hand, K.P.: Life without photosynthesis. Science 292, 2026–2027 (2001).
Fritz, J., Neale, P., Davis, R., Pelloquin, J.: Response of Antarctic phytoplankton to solar UVR exposure: inhibition and recovery of photosynthesis in coastal and pelagic assemblages. Mar. Ecol. Prog. Ser. 365, 1–16 (2008)
Martin, W., Russell, M.J.: On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos. Trans. R. Soc. Lond. B 358, 59–85 (2003).
Nisbet, E.G., Cann, J.R., VanDover, C.L.: Origins of photosynthesis. Nature 373, 479–480 (1995).
Perez, N., Cardenas, R., Martin, O., Rojas, R.: Modeling the onset of photosynthesis after the Chicxulub asteroid impact. Astrophys. Space Sci. 343, 7–10 (2013)
Pringault, O., Kuhlt, M., de Wit, R., Caumette, P.:´. Growth of green sulphur bacteria in experimental benthic oxygen, sulphide, pH and light gradients. Microbiology 144, 1051–1061 (1998).
Simoncini, E., Russell, M.J., Klidon, A.: Modeling free energy availability from Hadean hydrothermal systems to the first metabolism. Orig. Life Evol. Biosph. 41, 529–532 (2011).
Van Dover, C.L.: The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press, Princeton (2000).
Van Dover, C.L., Reynolds, G.T., Chave, A.D., Tyson, J.A.: Light at deep-sea hydrothermal vents. Geophys. Res. Lett. 23, 2049–2052 (1996).
Yurkov, V.V., Krieger, S., Stackebrandt, E., Beatty, J.T.: J. Bacteriol. 181, 4517–4525 (1999).