Metodología para el tratamiento de problemas con incertidumbre
Fecha
2017-12-12
Autores
Simão João, Edgar Ribeiro
Argüelles Cortés, Lucía Francisca
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
En la presente investigación se analizan las diversas
fuentes que aportan incertidumbre a un problema o
planteamiento, con vista a caracterizar dos de las
más importantes, que son el riesgo y los estudios de
prospectiva. Se ejemplifican tipos de métodos para
abordar la incertidumbre y se explica la base metodológica
de los mismos. Se describen las principales
funciones del método de comparación con vista
a destacar la importancia de su estructuración en el
cumplimiento de sus funciones y se fundamenta la
experimentación numérica como criterio de confiabilidad
de los modelos apropiados. El análisis realizado
conduce a la propuesta de una metodología
para abordar problemas con incertidumbre.
In the present investigation, the diverse sources that contribute uncertainty to a problem or position are analyzed, in order to characterize two of the most important, those are the risk and the studies of prospective. Types of methods are exemplified to approach the uncertainty and the methodological base of them is explained. The main functions of the comparison method are described with view to highlight the importance of their structuring in the execution of their functions and the numeric experimentation is based as approach of confidence of the appropriate models. The carried out analysis leads to the proposal of a methodology to approach problems with uncertainty.
In the present investigation, the diverse sources that contribute uncertainty to a problem or position are analyzed, in order to characterize two of the most important, those are the risk and the studies of prospective. Types of methods are exemplified to approach the uncertainty and the methodological base of them is explained. The main functions of the comparison method are described with view to highlight the importance of their structuring in the execution of their functions and the numeric experimentation is based as approach of confidence of the appropriate models. The carried out analysis leads to the proposal of a methodology to approach problems with uncertainty.
Descripción
Palabras clave
Prospectiva, Riesgo, Técnicas Delphi, Lógica Difusa, Consenso, Experimentación Numérica, Prospective, Risk, Delphi Technics, Diffuse Logic, Consensus, Numerical Experimentation
Citación
Dalkey, N.C. (1969). The Delphi method: an experimental
study of group opinion. Santa Mónica: The Rand Corporation.
Ishikawa, A., et al. (1993). The max–min Delphi method
and fuzzy Delphi method via fuzzy integration. Fuzzy
Sets and Systems, 112(2000), 511-520.
Kaufmann, A., & Gupta, M. M. (1985). Introduction to
Fuzzy Arithmetic: Theory and Applications. New York:
Van Nostrand Reinhold.
Lee, H.-S. (2002), Optimal consensus of fuzzy opinions
under group decision making environment. Fuzzy Sets
and Systems, 132 (3), 303-315. Recuperado de https://
dl.acm.org/citation.cfm?id=637309
Linstone, H. A., & Turoff, M. (1975). The Delphi method: Techniques
and applications. Reading: Addison-Wesley
Publishing Company.
Murray, T. J., Pipino, L. L., & Van Gigch, J.P. (1985). A
Pilot Study of Fuzzy Set Modification of Delphi. Human
Systems Management, 5, 6-80. Recuperado de https://
www.scienceopen.com/document?vid=432e49bad228-
4e5c-a541-bbb7e614ec94
Ortega San Martín, F. (1997). La prospectiva: herramienta
indispensable en una era de cambios. Recuperado de
http://www.oei.es/historico/salactsi/PROSPECTIVA2.
PDF
Wang, W. J. (1997). New Similarity Measure on Fuzzy Sets
and on Elements. Fuzzy Sets and Systems, 85, 305-
309. Recuperado de http://www.sciencedirect.com/
science/article/pii/0165011495003657