Predicción de la velocidad del viento para la generación eólica mediante redes neuronales artificiales
Fecha
2019-06-21
Autores
Pérez Rodríguez, Daniel
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Central "Marta Abreu" de Las Villas, Facultad de Ingeniería Eléctrica, Departamento de Electroenergética
Resumen
La presente investigación surge ante la necesidad de predicción de la velocidad del viento en instalaciones eólicas, cuya constante intermitencia afecta negativamente la calidad de la electricidad que se entrega a la red, así como el desempeño de los operadores de la instalación, quienes deben contar con las reservas que aseguren un buen funcionamiento del sistema. En consecuencia, se ofrece una herramienta basada en Redes Neuronales Artificiales (RNA), capaz de predecir la velocidad del viento en un horizonte de pronóstico de corto plazo, más específicamente de una hora en el futuro. El tipo de RNA que se emplea es la Feedforward Backpropagation, utilizada por diversos autores debido a las precisas soluciones que ofrece en problemas de predicción y aproximación. Mediante el Neural Network Toolbox de Matlab se conforman cuatro modelos, diferenciándose entre sí por cambios en su arquitectura y parámetros internos, con el objetivo de identificar la mejor topología para este tipo de aplicaciones. Como resultado del proceso investigativo se ofrece una herramienta capaz de predecir con gran precisión la velocidad del viento a corto plazo, con valores de Error Medio Absoluto (MAE) y Error Medio Cuadrático (MSE) por debajo de las 0.231 y 0.086 unidades respectivamente, lo que comparado con otras publicaciones es un resultado muy favorable. El trabajo podrá ser utilizado con fines docentes en la formación profesional de ingenieros eléctricos, así como, ser utilizado en cualquier industria o servicio que requiera predecir la velocidad del viento.
Descripción
Palabras clave
RNA, Predicción, Velocidad del Viento