On the habitability of aquaplanets

Fecha

2014

Autores

Cárdenas Ortiz, Rolando Pedro
Pérez Díaz, Noel
Martinez Frias, Jesus
Martín González, Osmel

Título de la revista

ISSN de la revista

Título del volumen

Editor

Resumen

An Aquatic Habitability Index is proposed, based on Quantitative Habitability Theory, and considering a very general model for life. It is a primary habitability index, measuring habitability for phytoplankton in the first place. The index is applied to some case studies, such as the habitability changes in Earth due to environmental perturbations caused by asteroid impacts.

Descripción

Palabras clave

Life Emergence, Habitability, Primary Production, Photosynthesis, Phytoplankton

Citación

Citar según la fuente original: 1. Quantitative Habitability Theory. Available online: http://phl.upr.edu/projects/planetary-habitability (accessed on 8 May 2014). 2. Méndez, A. Evolution of the Global Terrestrial Habitability during the Last Century. In Proceeedings of Sixth Astrobiology Science Conference, Houston, TX, USA, 26–29 April 2010. 3. Hadjibiros, K. Ecology and Applied Environmental Science; CRC Press, Taylor and Francis Group: Boca Raton, Florida, USA, 2013; pp. 49–51. 4. Kirk, J. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: New York, NY, USA, 2011; p. 453. 5. Fennel, W.; Neumann, T. Introduction to the Modelling Marine Ecosystems; Elsevier B.V.: Amsterdam, The Netherlands, 2004; p. 133. 6. Fritz, J.; Neale, P.; Davis, R.; Pelloquin, J. Response of Antarctic phytoplankton to solar UVR exposure: Inhibition and recovery of photosynthesis in coastal and pelagic assemblages. Mar. Ecol. Prog. Ser. 2008, 365, 1–16. 7. Rodriguez, L.; Cardenas, R.; Avila-Alonso, D. On the photosynthetic potential in open oceans. Rev. Cub. Fis. 2014, 31, 15–17. 8. Jerlov, N. Marine Optics, 2nd ed.; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1976; pp. 127–137. 9. Martin, O.; Galante, D.; Cardenas, R.; Horvath, J. Short-term effects of gamma ray bursts on Earth. Astrophys. Space. Sci. 2009, 321, 161–167. 10. Martin, O.; Cardenas, R.; Guimarais, M.; Peñate, L.; Horvath, J.; Galante, D. Effects of gamma ray bursts in Earth’s biosphere. Astrophys. Space Sci. 2010, 326, 61–67. 11. Martin, O.; Cardenas, R.; Horvath, J.; Peñate, L. Effects of galactic gamma rays bursts on planetary atmospheres. Int. J. Mod. Phys. E-Nucl. Phys. 2011, 20, 67–70. 12. Peñate, L.; Martin, O.; Cardenas, R.; Agusti, S. Short-term effects of gamma ray bursts on oceanic photosynthesis. Astrophys. Space Sci. 2010, 330, 211–217. 13. Cardenas, R.; Martin, O.; Peñate, L.; Horvath, J. Effects of galactic gamma rays bursts on planetary biospheres. Int. J. Mod. Phys. E-Nucl. Phys. 2011, 20, 132–135. 14. Thomas, B.; Melott, A.; Jackman, C.; Laird, C.; Medvedev, M.; Stolarski, R.; Gehrels, N.; Cannizzo, J.; Hogan, D.; Ejzak, L. Gamma-ray bursts and the Earth: Exploration of atmospheric, biological, climatic and biogeochemical effects. Astrophys. J. 2005, 634, 509–533. 15. Tropospheric Ultraviolet and Visible Radiation Model. Available online: http://cprm.acd. ucar.edu/Models/TUV/ (accessed on 21 August 2014). 16. Ribeiro, S.; Berge, T.; Lundholm, N.; Andersen, T.; Abrantes, F.; Ellegaard, M. Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nat. Commun. 2011, 2, 1–7. 17. Perez, N.; Martin, O.; Cardenas, R. Photobiological damage associated to the Chicxulub asteroid impact. Rev. Cub. Fis. 2014, submitted. 18. Hader, D.; Kumar, H.; Smith, R.; Worrest, R. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 2007, 6, 267–285.