Inpainting‑filtering for metal artifact reduction (IMIF‑MAR) in computed tomography
Fecha
2021
Autores
Rodriguez-Gallo Guerra, Yakdiel
Orozco Morales, Rubén
Perez Diaz, Marlen
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
The reduction of metal artifacts remains a challenge in computed tomography because they decrease image quality, and consequently might affect the medical diagnosis. The objective of this study is to present a novel method to correct metal artifacts based solely on the CT-slices. The proposed method consists of four steps. First, metal implants in the original CTslice are segmented using an entropy based method, producing a metal image. Second, a prior image is acquired using three transformations: Gaussian filter, Parisotto and Schoenlieb inpainting method with the Mumford-Shah image model and L0
Gradient Minimization method (L0GM). Next, based on the projections from the original CT-slice, prior image and metal image, the sinogram is corrected in the traces affected by metal in the process called normalization and denormalization. Finally, the reconstructed image is obtained by FBP and a Nonlocal Means (NLM) filtering. The efficacy of the algorithm is evaluated by comparing five image quality metrics of the images and by inspecting regions of interest (ROI). Phantom data as well as clinical datasets are included. The proposed method is compared with three established metal artifact reduction
(MAR) methods. The results from a phantom and clinical dataset show the visible reduction of artifacts. The conclusion is that IMIF-MAR method can reduce streak metal artifacts effectively and avoid new artifacts around metal implants, while preserving the anatomical structures. Considering both clinical and phantom studies, the proposed MAR algorithm improves the quality of clinical images affected by metal artifacts, and could be integrated in clinical setting.
Descripción
Palabras clave
Metal artifact reduction, Computed tomography, Image quality, Implants