Comparative Study Between a Deterministic and Stochastic model’s for the Hematopoietic Reconstitution
Archivos
Fecha
2022-01-07
Autores
Lumpuy Obregón, Dennis
Martínez Hernández, Miguel A.
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer
Resumen
The dynamics of the processes of cell maturation and regeneration is a
branch currently in development for medicine, so taking advantage of the facilities of
mathematics to model and solve environmental problems, different models of differential equations have been developed to describe these processes. From the existing
deterministic models, the particular case of the hematopoietic cell is chosen, for of
a comparative study on the influence of the medium on the process of cell maturation. For this, a probabilistic model of differential equations with six compartments
is used. The stochastic term or environmental noise in this particular case modeled
by a Weiner process. Using randomly selected diffusion coefficients, a preliminary
mathematical comparison of the deterministic and stochastic systems is achieved
for subsequent biological analysis. The inclusion of this term makes it possible to
perform an analysis conditioned on the influence of the medium of the different
processes of cellular maturation, in this case, of the hematopoietic cell.
Descripción
Palabras clave
Deterministic models · Hematopoietic cell · Cell maturation · Stochastic model
Citación
1. A. Gratwohl HB. Trends of hematopoietic stem cell transplantation in the third millennium.
Curr Opin Hematol 16. 2009:420–6.
2. A. Marciniak-Czochra TS. Mathematical models of hematopoietic reconstruction after stem
cell transplantation. Model Based Parameter Estimation: Theory and Applications: Springer
Verlag.
Comparative Study Between a Deterministic and Stochastic model’s … 221
3. J. E. Till EAM, L. Siminovitch. A stochastic model of stem cell proliferation, based on the
growth of spleen colony-forming cells: Proc Natl Acad Sci U S A; 1964.
4. T. Stiehl AM-C. Characterization of stem cells using mathematical models of multistage cell
lineages. Mathematical and Computer Modelling. 2010.
5. A. Marciniak-Czochra TS, W. Jaeger, A.D. Ho, W. Wagner. Modelling of asymmetric cell division in hematopoietic stem cells-regulation of self-renewal is essential for efficient repopulation.
Stem Cells Dev 18. 2009:377–85.
6. Mackey CCaMC. A mathematical model of hematopoiesis: I Periodic chronic myelogenous
leukemia. J Theoret Biol. 2005;237:117–32.
7. M. Doumic AM-C, B. Perthame, and J. P. Zubelli. A Structured Population Model of Cell
Differentiation. SIAM J Appl Math. (71):1918–40.
8. Z. Wu KL-P, A. Bugde, L. A. Molyneux, B. Denard, W. Li,. Capacity for stochastic self-renewal
and differentiation in mammalian spermatogonial stem cells. JCB vol 187.513–24.
9. Fried W. Erythropoietin and erythropoiesis. Exp Hematol. 2009;37:1007-15.
10. A. Lasota MM, M. Wazewska-Czyzewska. Minimizing therapeutically induced anemia. J Math
Biol. 1981;13:149–58.
11. Adamson JW. The relationship of erythropoietin and iron metabolism to red blood cell
production in humans. Sem Oncol. 1994;21 9–15.
12. M. Z. Ratajczak JR, W. Marlicz, C. H. Pletcher, Jr., B. Machalinshi, J. Moore, H. Hung, and A.
M. Gewirtz. Recombinant human thrombopoietin (TPO) stimulates erythropoiesis by inhibiting
erythroid progenitor cell apoptosis. Br J Haematol. 1997(98):8–17.
13. Metcalf D. Hematopoietic cytokines. Blood. 2008;111:485-91.
14. C. L. Semerad FL, A. D. Gregory, K. Stumpf, D. C. Link. G-CSF Is an Essential Regulator of
Neutrophil Trafficking from the Bone Marrow to the Blood. Immunity. 2002:413–23.
15. T. H. Price GSC, and D. C. Dale. Effect of recombinant granulocyte colony-stimulating factor
on neutrophil kinetics in normal young and elderly humans. Blood. 1996;88:335–40.
16. Pa´zdziorek Pl. Mathematical model of stem cell. Preprint. 2012.